
COMBINING IMAGE PROCESSING WITH

SIGNAL PROCESSING TO IMPROVE

TRANSMITTER GEOLOCATION ESTIMATION

THESIS

Amy M. Abraham, Second Lieutenant, USAF

AFIT-ENG-14-M-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the
United States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-14-M-01

COMBINING IMAGE PROCESSING WITH

SIGNAL PROCESSING TO IMPROVE

TRANSMITTER GEOLOCATION ESTIMATION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Amy M. Abraham, B.S.E.E.

Second Lieutenant, USAF

March 2014

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-14-M-01

COMBINING IMAGE PROCESSING WITH

SIGNAL PROCESSING TO IMPROVE

TRANSMITTER GEOLOCATION ESTIMATION

Amy M. Abraham, B.S.E.E.
Second Lieutenant, USAF

Approved:

//signed//

Richard K. Martin, PhD (Chairman)

//signed//

Lt Col Jeffrey D. Clark, PhD (Member)

//signed//

Michael A. Temple, PhD (Member)

25 Feb 2014

Date

25 Feb 2014

Date

25 Feb 2014

Date

AFIT-ENG-14-M-01
Abstract

This research develops an algorithm which combines image processing with signal

processing to improve transmitter geolocation capability. A building extraction algorithm

is compiled from current techniques in order to provide the locations of rectangular

buildings within an aerial, orthorectified, RGB image to a geolocation algorithm. The

geolocation algorithm relies on measured time difference of arrival (TDOA) data from

multiple ground sensors to locate a transmitter by searching a grid of possible transmitter

locations within the image region. At each evaluated grid point, theoretical TDOA values

are computed for comparison to the measured TDOA values. To compute the theoretical

values, the shortest path length between the transmitter and each of the sensors is

determined. The building locations are used to determine if the line of sight (LOS) path

between these two points is obstructed and what would be the shortest reflected path

length. The grid location producing theoretical TDOA values closest to the measured

TDOA values is the result of the algorithm. Measured TDOA data is simulated in this

thesis. The thesis method performance is compared to that of a current geolocation

method that uses Taylor series expansion to solve for the intersection of hyperbolic curves

created by the TDOA data. The average online runtime of thesis simulations range from

around 20 seconds to around 2 minutes, while the Taylor series method only takes about

0.02 seconds. The thesis method also includes an offline runtime of up to 30 minutes for a

given image region and sensor configuration. The thesis method improves transmitter

geolocation error by an average of 44m, or 53% in the obstructed simulation cases when

compared with the current Taylor series method. However, in cases when all sensors have

a direct LOS, the current method performs more accurately. Therefore, the thesis method

is most applicable to missions requiring tracking of slower-moving targets in an urban

environment with stationary sensors.

iv

Thank you to all my friends and family who knew when to distract me from my thesis and
when to make me work.

v

Table of Contents

Page

Abstract . iv

Dedication . v

Table of Contents . vi

List of Figures . viii

List of Tables . x

List of Acronyms . xi

I. Introduction . 1

1.1 Research Motivation and Related Research 1
1.2 Research Goal . 4
1.3 Research Methodology . 4
1.4 Thesis Organization . 6

II. Literature Review . 8

2.1 Image Preprocessing Methods . 8
2.1.1 Color Models . 8
2.1.2 Normalization, Thresholding, and Contrast Enhancement 10
2.1.3 Filtering . 11

2.2 Image Segmentation Methods . 12
2.2.1 Edge Detection . 13
2.2.2 Seeded Region Growing . 15
2.2.3 Multithresholding and Clustering 17

2.3 Image Post-Processing Methods . 20
2.3.1 Spectral Patterns . 20
2.3.2 Defining and Merging Regions . 21
2.3.3 Feature Extraction . 22

2.4 Geolocation Methods with Unobstructed Lines of Sight 25
2.4.1 Analytical Approach . 26
2.4.2 Numerical Approach . 28

2.5 Fusion of Signal Information with Image Information 29
2.5.1 Shortest Path . 30

vi

Page

2.5.2 Applying Multipath Analysis to Geolocation 34

III. Methodology . 35

3.1 Image Preprocessing . 36
3.2 Image Segmentation . 37

3.2.1 K-means Clustering . 38
3.2.2 Shadow Segmentation and Processing 42

3.3 Image Post-Processing . 48
3.3.1 Erosion of Shadow Object and Overlap Search 50
3.3.2 Erosion of Convex Image of Shadow Object and Overlap Search . . 52
3.3.3 Combining and Processing Building Objects 54
3.3.4 Final Processing to Complete Building Extraction 56
3.3.5 Finding a Rectangle of Best Fit 58

3.4 Checking Lines of Sight for Obstructions 60
3.5 Finding the Shortest Paths . 63
3.6 Combining Signal Information with Image Information 66

IV. Results and Analysis . 72

4.1 Building Extraction Results . 72
4.2 Geolocation Results . 79

V. Conclusions . 88

5.1 Summary . 88
5.2 Impact . 90
5.3 Recommendations for Future Work . 92

Bibliography . 93

vii

List of Figures

Figure Page

2.1 Contrast Enhancement Example . 12

2.2 Filters Comparison . 13

2.3 Canny Edge Detection Example . 14

2.4 Edge Detection Segmentation Example . 15

2.5 Complex Edge Detection Example . 16

2.6 Spectral Patterns Example . 21

2.7 Missing Shadow Example . 23

2.8 Object Axes Illustration . 24

2.9 Law of Reflection Illustration . 31

2.10 Example of Wall Visibility . 33

3.1 Original Image, OH . 36

3.2 Intensity and Contrast Enhancement . 37

3.3 Clustered Image . 39

3.4 Cluster Sets . 40

3.5 Raw Shadow Pixels . 43

3.6 Processed Shadow Objects . 48

3.7 Shadow to Building Overlap Search . 53

3.8 Building Objects Found during Overlap Search 55

3.9 Reassembled Buildings . 57

3.10 Building Extraction Result . 58

3.11 Scaled Image of Buildings . 61

3.12 Obstructed Lines of Sight . 62

3.13 Shortest Paths from Known Transmitter Location 66

viii

Figure Page

3.14 MLE of Transmitter Location . 70

4.1 Building Extraction Image 1 . 73

4.2 Building Extraction Variations for Image 1 . 73

4.3 Building Extraction Image 2 . 74

4.4 Building Extraction Variations for Image 2 . 74

4.5 Building Extraction Image 3 . 75

4.6 Building Extraction Variations for Image 3 . 75

4.7 Building Extraction Image 4 . 76

4.8 Building Extraction Variations for Image 4 . 76

4.9 Building Extraction Image 5 . 77

4.10 Building Extraction Variations for Image 5 . 77

4.11 Image Geolocation Comparison . 81

4.12 Transmitter Location Comparison . 83

4.13 σN Comparison . 84

4.14 Sensor Configuration Comparison . 86

ix

List of Tables

Table Page

3.1 Shadow Erosion Structuring Elements . 49

4.1 Statistics for Extracted Buildings . 80

4.2 Comparison of Image Geolocation Averaged over 50 Simulations for Thesis

(T) and Current Taylor Series (C) Methods . 80

4.3 Comparison of Transmitter Locations Averaged over 50 Simulations for Thesis

(T) and Current Taylor Series (C) Methods . 82

4.4 Comparison of σN values Averaged over 50 Simulations for Thesis (T) and

Current Taylor Series (C) Methods . 84

4.5 Comparison of Sensor Configurations Averaged over 50 Simulations for Thesis

(T) and Current Taylor Series (C) Methods . 85

x

List of Acronyms

Acronym Definition

AFIT Air Force Institute of Technology

AWGN additive white Gaussian noise

BW black and white

CDF cumulative distribution function

FFT fast Fourier transform

GSD ground sample distance

LOS line of sight

LS least-squares

MATLAB® matrix laboratory

MLE maximum likelihood estimator

NTSC National Television Standards Commission

PDF probability density function

RF radio frequency

SI spherical interpolation

TDOA time difference of arrival

TOA time of arrival

xi

COMBINING IMAGE PROCESSING WITH

SIGNAL PROCESSING TO IMPROVE

TRANSMITTER GEOLOCATION ESTIMATION

I. Introduction

This chapter provides an overview of the contents of this thesis. The chapter

discusses why this research area is significant and explains the approach taken.

1.1 Research Motivation and Related Research

There are many situations when it is necessary or useful to locate someone or

something by using the signal emissions from a radio transmitter on the ground.

Geolocation can be applied to civilian, military, commercial, government, domestic, or

overseas situations. The applications are boundless. Due to the prevalent need for this

capability, there are many methods already developed for accomplishing geolocation.

Most, if not all, of these methods rely on signal timing information and, more specifically,

on time difference of arrival (TDOA) data. When a sensor detects a signal, usually the

sensor has no way of knowing when the signal was transmitted and therefore no way of

knowing the travel time, or time of arrival (TOA), of the signal. There are rare situations

when the TOA can be estimated. For example, [10] estimates the TOA of a prompted

signal transmitted from a cell phone using the round trip time calculated as the time

between when the signal was prompted and when it was received. However, collecting

TOA in this manner requires logistical and universal planning, which is not always

practical or available. The TDOA data is therefore much more commonly used. Though

TOA can rarely be estimated, relative timing can be calculated if there are multiple

1

sensors. The first sensor to detect the signal must be closest to the transmitter, since the

time it takes for a radio signal to travel is directly proportional to the distance it travels. In

this way, TDOA data can narrow down the location of the transmitter. If the number of

sensors is at least one greater than the number of unknown coordinates, then this location

can be determined precisely. This is because the number of TDOA estimates is one less

than the number of sensors.

There are many techniques which have been developed to use TDOA values from

multiple sensors for position localization. Some of them only apply to spatially linear

sensors, such as beamforming or those assuming a distant source [3]. More generalized

techniques which can apply to any sensor configuration are more complex. These

techniques solve for the intersection of a set of hyperbolic curves which are defined by the

TDOA data. Of all these methods, few provide a precise estimate under noisy conditions

or make use of extra sensor information if there are more than the required number of

sensors. One of these few methods, which is commonly used, is the Taylor series method

[3, 10]. It is an iterative method which improves upon an initial location estimate by

determining the local least-squares (LS) solution [3, 10]. It continues to improve the

solution until the difference in the improvements becomes smaller than a given threshold

or until a given number of iterations have been performed. If the initial location guess is

not close enough to the actual location, then local minima may be mistaken for the actual

location. Also, the solution may not converge. Aside from these issues, the Taylor series

method provides very accurate results under noisy conditions when there are no

obstructions between the sensors and the transmitter. Therefore, this is the method that

will be compared against the method developed in this thesis.

The method developed in this thesis seeks to improve geolocation estimation when

there are obstructions between the sensors and the transmitter. This is a relatively novel

exploration. There is a method discussed by [10] which attempts to correct the bias to the

2

TDOA values caused by the longer path taken by the signal in the obstructed case, but this

method relies on assumptions about the variance and distribution of the biased data, rather

than on knowledge about the actual obstructions [10]. The only localization methods

found to incorporate predictability using the actual environment are based on small, easily

controlled, indoor environments and do not involve obstructions. Reference [12] presents

a method for indoor speaker localization by using the TDOA of sound waves, which

behave similarly to radio waves. In an indoor environment, TDOA data is corrupted by

reverberations from the enclosing walls. Reference [12] uses conditional probability

density functions created from training data taken by placing the speaker at representative

locations in the room in order to classify the experimental data into angular regions of the

room. Even if the solution for dealing with reverberations proposed by [12] could be

applied to obstructions, and if classification by region were possible on the much larger

scale of an outdoor urban environment, the extent of the required prior knowledge is

impractical. Therefore, this thesis proposes a new method of accounting for non-line of

sight (LOS) situations in geolocation, where the only prior knowledge of the environment

that is required is an aerial, orthorectified, RGB image of the area in which the transmitter

and the sensors are located.

The aerial image can be used to find the locations of buildings which may obstruct the

LOS between a transmitter and a sensor. Fortunately, the need for image processing is just

as prevalent as it is for geolocation. There are many building extraction algorithms already

developed. The algorithm developed in this thesis is merely a compilation of numerous

current techniques already in use. The purpose of creating the building extraction

algorithm in this thesis is simply to provide realistic data to the geolocation algorithm and

to show how this data was obtained. Any building extraction algorithm can be used in

place of the one developed here as long as it provides the required data to the geolocation

algorithm.

3

1.2 Research Goal

The goal of this research was to improve upon existing geolocation methods of

locating a transmitter using timing information from multiple sensors. This was

accomplished by applying knowledge gained from using existing methods to process an

aerial image of the environment in which the transmitter and the sensors are located.

Current geolocation methods either do not consider or do not accurately correct the

corruption of signal timing information caused by reflections. Extracting the locations of

buildings from aerial images provides location information about the reflecting and

obstructing surfaces which affect the signal timing information. Information about the

non-LOS signal paths can greatly improve the accuracy of geolocation.

1.3 Research Methodology

The method proposed by this thesis begins with an orthorectified, aerial, RGB image.

All image processing techniques used to extract building locations existed prior to this

research. Along with the image, two other inputs to the building extraction algorithm are

required, including a rough minimum expected building perimeter estimate and a rough

maximum expected building perimeter estimate. The RGB values in the image are then

converted to grayscale intensity values and a contrast enhancement technique is applied.

The pixels with an intensity below a certain threshold are classified as shadows, and the

remaining pixels in the image are clustered based on their intensity values. The connected

pixels in each cluster are potential building objects. The shadow objects are processed

separately and classified based on their shape and size. A direction is calculated describing

which side of the shadows is likely to overlap the building that casts the shadow. Then,

each shadow is compared to each building object. Those building objects which overlap

the same shadow on the correct side of that shadow are considered part of the same object.

Each of these objects is then classified based on size and shape. The remaining objects are

4

considered to be the buildings in the image, and a rectangle of best fit is found for each

object. It is assumed for simplicity that the buildings are all rectangular with four walls.

Since TDOA data is not available for the overhead images used in this thesis, the

TDOA data is simulated. Transmitter and sensor locations are arbitrarily chosen, and the

shortest path from the transmitter to each of the sensors is found using the locations of the

buidings along with their walls. It is assumed that all buildings walls are high enough

intercept the signal and that all sensors as well as the transmitter are high enough off the

ground that the terrain does not intercept the signal. It is also assumed that the wall

surfaces of the buildings are rough enough to exhibit Lambertian reflectance. This means

that when a radio wave hits a wall, it is diffused in all directions from that side of the wall.

Therefore, every point on the surface of a wall is considered a valid reflection point,

whereby the reflection is always received by a sensor as long as LOS is not obstructed.

Finally, it is assumed that a path is not viable if there are more than two reflections in the

path, as this would diminish the signal power to an undetectable level. With these

assumptions, a list of walls facing the transmitter with a direct LOS is created. These

walls are potential reflection points between the transmitter and the sensors. From there, a

second list is created including the walls from the first list and any walls which face each

of them with a direct LOS. The wall pairings in the second list are potential points of

reflection in a double-reflection path between the transmitter and the sensors. To complete

the paths, the sensor locations are compared to the open walls in each list. The lengths of

the completed paths are then compared to find the shortest distance from the transmitter to

each sensor. These pixel distances are then converted to time values using the propagation

speed of radio waves and the ground sample distance of the image. These time values

represent TOA values at each sensor, and after noise is added, they are used to find the

TDOA values for each sensor.

5

Once the actual transmitter location is chosen, and the corresponding TDOA data are

simulated, a grid search is peformed to determine the location of the transmitter. At each

location in the grid search, the same steps that were performed to simulate the TDOA data

are performed to create the TDOA data which would theoretically be measured at the

sensors if that grid location were the transmitter location. The theoretical TDOA data are

compared against the simulated TDOA data, and the grid location which creates the most

similar data is determined to be the location of the transmitter.

1.4 Thesis Organization

Chapter II presents and examines relevant existing concepts and methods both for

image processing and for geolocation. The chapter presents the methods for image

processing before discussing the current concepts of geolocation. It steps through ideas

for preprocessing, for segmentation into buildings, and for post-processing. It is evident

that there are many successful building extraction methods currently available. Then, the

chapter discusses a few methods of geolocation which assume LOS conditions. This

discussion includes the Taylor series method of evaluating the hyperbolic curves created

by TDOA data. The Taylor series method is used as a baseline against which to compare

the improved method proposed in this thesis. The grid search method of finding the

maximum likelihood estimator (MLE) for a transmitter location is also discussed. This is

not an original technique. The chapter ends with a description of an existing concept for

determining the shortest path between two points when the direct LOS is not an option.

In Chapter III, the steps taken to develop the algorithm proposed by this thesis are

explained from image processing for building locations to geolocating a transmitter using

multiple sensors. None of the techniques used are original. However, the manner in which

the image information is combined with the signal information is a novel concept.

Chapter IV illustrates and explicates the results of the algorithm in various situations

compared with the competing Taylor series method. The building extraction portion of the

6

algorithm is applied to five different orthorectified, aerial, RGB images. The remaining

geolocation portion of the algorithm is applied to the extracted buildings in three of these

images. Furthermore, the results of five different additive white Gaussian noise (AWGN)

standard deviation (σN) values, five different transmitter locations, and five different

sensor configurations are compared between the thesis method and the Taylor series

method for both runtime and error.

Finally, Chapter V discusses the implications of the results and the usefulness of the

developed algorithm. Areas for further improvement and exploration are discussed as

well.

7

II. Literature Review

This chapter describes existing concepts and methods for obtaining the desired

information in this field of interest. The imaging side of the field is examined first

in this chapter. The goal of image processing in this thesis is to extract the

two-dimensional locations of any buildings present in the image plane. In order to

accomplish this goal, Section 2.1 first discusses possible modifications to color images

which can be helpful to the subsequent extraction techniques. Then, Section 2.2 details

various methods of breaking down an image into separate regions. Following this image

segmentation, Section 2.3 introduces ways to deal with the challenges of classifying the

appropriate segmented regions of an image as actual buildings. Following the discussion

on image processing with the purpose of building extraction, this chapter describes

methods of signal processing with the purpose of geolocation. Section 2.4 approaches the

basic problem of how to use signal timing information received from multiple sensors

with unobstructed lines of sight to a signal source in order to locate that source in a

two-dimensional plane. Then, in Section 2.5 the problem is expanded to the obstructed

case. The chapter ends with a proposal of how building extraction can be used to improve

geolocation accuracy in these cases.

2.1 Image Preprocessing Methods

Processing an image before analyzing it for objects of interest can improve efficiency

and provide more accurate results in the long run. This section offers a few ideas which

can aid in image processing as well as methods for implementing those ideas.

2.1.1 Color Models.

In this thesis, colors are not dealt with in the traditional sense. Rather, the color

components of an image are converted to a single value to enable direct comparison of

8

pixel color content within the image. This conversion can be accomplished in a number of

ways, but all of the methods discussed in this subsection begin with an RGB color model

representation of an image. This means that each pixel in the original image has three

values assigned to it. One value describes the red channel content in the pixel, the next

value describes the green channel content, and the third describes the blue channel content.

Combining these three values into a single value is a necessary preprocessing step for all

of the color segmentation methods discussed in this chapter, and the following sections

assume this step has been performed when referring to the color value of a pixel or region.

All of the color models and corresponding channel equations discussed in this

subsection are derived from [13]. After the RGB color model, the most common is the

YIQ model, described by Equation (2.1). This is the standard model used in National

Television Standards Commission (NTSC) color TV transmission. The Y channel roughly

corresponds to luminance or intensity, and the I and Q channels correspond to chroma, or

hue and saturation. Equation (2.1) shows that the Y channel transformation is most

heavily weighted towards the green channel component. This is because the human eye

registers green color more easily than it does red or blue color, which explains why this

model is the standard in television.

Y

I

Q

 =

0.299 0.587 0.114

0.596 −0.275 −0.321

0.212 −0.523 0.311

R

G

B

 (2.1)

The HSI model is another color model option, and Equation (2.2) describes the

channel transformations from the RGB model to this model.

9

I

V1

V2

 =

1
3

1
3

1
3

−
√

6
6

−
√

6
6

√
6

3

1
√

6
−2
√

6
0

R

G

B

 (2.2a)

S =

√
V2

1 + V2
2 (2.2b)

H = tan−1
(
V2

V1

)
if V1 , 0, otherwise H is undefined. (2.2c)

The H channel corresponds to hue, the S channel corresponds to saturation, and the I

channel corresponds to intensity, or brightness. Some other color models are HSV and

HCV. In both the HSV and the HCV color models, the V channel is the intensity channel,

and the transformation is exactly the same as the one used for the intensity I channel in

Equation (2.2). When analyzing image content for specific objects, it makes sense to

equally weight RGB channels. This paper utilizes the intensity channel calculated from

the transformation used in all three of these models to compare pixel values in an image.

2.1.2 Normalization, Thresholding, and Contrast Enhancement.

For some methods of image analysis, it may be beneficial to normalize the pixel values

of an image. If an image has been converted to grayscale or to another color model

channel as discussed above, then pixel values in the image will range from 0 to 255.

Reference [2] chooses to normalize the pixel values by interpolating the grayscale values

in a range from 0 to 1. They found the normalized values easier to understand and

manipulate. However, the merit of normalization really just depends on the input range

expected by the programs and functions being implemented.

Another way to simplify pixel values in an image is called thresholding. Pixel values

below a certain threshold value are assumed to be part of the background and are all set to

the same value, and the pixels above the threshold value are assumed to be part of the

foreground and are all set equal to each other as well [2]. In this way, the image is

converted to a binary image. Thresholding as a preprocessing step can be very useful

10

when edge detection is used for image segmentation, since it decreases noise and isolates

regions of interest. This simplification step may result in an undesirable loss of data,

however, if the image is complex. Edge detection image segmentation can also benefit

from boundary modification as a preprocessing step. This process simply changes the

value of all pixels which lie along the boundary of the image to a background pixel value

[2]. This way, any objects which lie on the border of the image are artificially given a

detectable edge, which aids in finding close object boundaries [2].

Another pixel value manipulation that can be helpful in the preprocessing stages is

contrast enhancement. Contrast enhancement can make edges and other variations more

easily detected. There are multiple ways of enhancing the contrast in an image. One way

is through histogram equalization, which is accomplished by spreading the pixel values in

the image evenly across the entire possible range of values. The result of applying

histogram equalization to an image is a probability density function (PDF) of pixel values

that looks like a uniform distribution and a cumulative distribution function (CDF) that

looks like a line with a slope of one. Another method of contrast enhancement also

involves spreading the pixel values across the full possible range of values. The difference

is that the pixels are mapped to the new values, which only stretches the original

distribution, rather than equalizing the histogram. This technique makes the existing

variation in the image more obvious without introducing new variation. An example of

contrast enhancement, which was performed by [2], is shown in Figure 2.1. The PDF of

the original image is weighted toward the brighter end of the range of values. After

contrast enhancement, the image brightness has been toned down to reveal variations that

were less visible in the original image.

2.1.3 Filtering.

The descriptions of filtering benefits and techniques in this subsection are taken from

[2]. Filtering is a way of removing noise or unwanted artifacts from an image, but it can

11

Figure 2.1: An example of an image (a) before and (b) after contrast enhancement [2].

Used with permission.

sometimes be tricky to accomplish this removal without also removing important

information from the image. Reference [2] compares various filters in Figure 2.2.

Reference [2] found the median filter to perform the best for edge detection purposes,

since it removes noisy salt and peppering while maintaining edges.

2.2 Image Segmentation Methods

This section covers research which explores various methods of partitioning an image

in order to analyze certain groups of pixels. The goal of each method is to create pixel

groups describing individual objects which have the potential of representing a building.

Many of the methods that will be described rely on color values for segmentation. After

segmentation based on color, each segmented region is usually a group of relatively

homogeneous pixels. This means they were grouped together to represent an object under

the assumption that objects of interest are monochromatic. These methods therefore

require post-processing to determine not only which regions represent objects of interest

(potential buildings), but also which regions may represent parts of the same

12

Figure 2.2: An example of a medical CT image after (left to right) (a) median filtering;

(b) averaging filtering; (c) Gaussian low pass filtering; (d) Laplacian filtering; (e) Prewitt

filtering; and (f) Sobel filtering [2]. Used with permission

polychromatic object. Relevant post-processing techniques will be discussed in

Section 2.3.

2.2.1 Edge Detection.

Unless otherwise specified, the information included in this subsection is extracted

from [2] and focuses on edge detection as a form of image segmentation. Reference [2]

applies segmentation methods to a medical CT scan, rather than an overhead image, but

the concepts apply to either type of image. Edge detection is a fairly straightforward

concept, and there are many techniques used to accomplish the task. Most techniques find

edges by defining them as areas of abrupt change from one group of similar color values

to another group of similar color values. Reference [2] claims that the Canny edge

detection algorithm provides the best results when compared with the Prewitt, the Sobel

operator, and the Hough transform, measured in terms of detecting the edges, locating

them accurately, and marking them uniquely. However, even the best edge detection

13

Figure 2.3: An example of an image (a) before and (b) after Canny edge detection [2].

Used with permission.

methods are very susceptible to noise, and their reliance on classifying levels of variation

in a region as either part of the same object or the start of a new object can lead to false

edges or gaps, rather than accurate and closed object boundaries. Therefore, preprocessing

can be very helpful, and post-processing of the edges is almost always required to

accomplish segmentation. This is why [2] also employs the Moore neighborhood

boundary tracing technique following the Canny edge detection.

Figure 2.3 shows the results of applying Canny edge detection to an image. Before

applying this detection, however, [2] chooses to include thresholding as one of the

preprocessing steps following a conversion to grayscale values. This is why the image

shown in Figure 2.3 is a binary image and also why the edge detection is able to produce

such clean results.

Then, [2] uses the Moore neighborhood boundary tracing technique to locate pixels

along the detected edges and connect them. Any pixels residing inside the boundary are

converted to the value of the other pixels in the region. Another step used by [2] to

complete the image segmentatio based on edge detection is referred to as “point in

polygon.” In this step, the contour resulting from the Moore tracing step is the polygon,

14

Figure 2.4: An example of an (a) original image alongside (b) the results of edge detection

segmentation [2]. Used with permission.

and the pixels in the original image are points that are tested to see whether they lie within

the polygon. The results are shown in Figure 2.4.

Canny edge detection is used by [6] as well, but it is applied to a more complex

overhead image similar to the one in Figure 2.5, rather than to a medical CT scan.

Figure 2.5 shows how inconclusive edge detection on a more complex image can be.

Therefore, just as [2] used Moore neighborhood boundary tracing to make sense of the

detected edges, so does [6] use a technique they call USC LINEAR linking

approximation. This technique combines parallel edges that are very close to one another

into a single edge and groups other edges to reduce the presence of fragments [6]. Further

post-processing of image segmentation will be discussed in Section 2.3.

2.2.2 Seeded Region Growing.

All theory in this subsection is derived from information found in [8]. The seeded

region growing method of image segmentation groups pixels based on one feature, usually

color. For the seed points, the algorithm chooses singular pixels spaced at regular intervals

throughout an image. The size of these intervals corresponds to the minimum expected

size in pixels of a building in the image. If the seed pixels are spaced too far apart, the

15

Figure 2.5: An example of an (a) original overhead image alongside (b) the results of Canny

edge detection with a threshold determined automatically in MATLAB®. Original image

data available from the U.S. Geological Survey [1].

algorithm could mistakenly group multiple buildings into one object. A modified method

of choosing the seed points entails dividing the image into equal initial regions, and then

arbitrarily choosing one pixel in each region that resembles a building pixel. In [8], seed

points were chosen using this modified method and basing the resemblance on an

assumption that the roofs of buildings are most likely to be red or gray in color. Therefore,

the seed pixel for each initial region was arbitrarily chosen from the set of pixels in the

region that were classified as red or gray with a value bright enough to exclude those

pixels which could potentially belong to a shadow.

Once seed point pixels are assigned throughout an image, regions are “grown” from

these seeds. Each seed pixel is compared to its adjacent pixels. If the adjacent pixel value

is within a given threshold of the seed value, then that pixel is assigned to the

corresponding seed. This is an iterative operation. Each seed region spreads as it

continues to evaluate pixels neighboring its new members and compare them to the new

mean value of that seed region. All seed regions are grown simultaneously. If a pixel has

16

already been assigned to another seed, it is not assigned twice. The iterative growing

operations end when all pixels in the image have been uniquely assigned to a seed.

This method is expensive both computationally and in terms of memory. It is also

difficult to implement in MATLAB®, as simultaneous operations are not possible.

Another limitation to this method is that the number of resulting regions is not adaptive.

The number of seed points is chosen up front, and the number of resulting regions is equal

to the number of seed points regardless of relevance. If too few seed points are chosen,

buildings could potentially be combined, which defeats the purpose of the segmentation

step. Since post-processing techniques rely on successful and complete segmentation,

combined buildings will be treated as one building, and the resulting extraction will have

errors. If too many seed points are chosen, building extraction can still be successful with

appropriate post-processing. However, as the number of seed points increases, the

computational and memory costs increase as well.

2.2.3 Multithresholding and Clustering.

In Section 2.1 thresholding is discussed as a way of segmenting an image based on

foreground and background assumptions and thereby converting the image to a binary

image. This method is also known as bilevel thresholding [9]. Multithresholding, on the

other hand, is necessary when the objects of interest vary in pixel values. In other words,

the image cannot reasonably be divided into one foreground value and one background

value. The simplest way to divide an image using multiple thresholds is to create bins of

equal sizes within the 0 to 255 pixel value range and classify pixels based on the bins to

which they belong. However, this method employs little intelligence about the values

present in the image and can result in bins with far fewer members than other bins. It can

also result in inadvertently grouping pixels which should be kept separate. One way of

intelligently choosing appropriate threshold values for the image involves analyzing the

histogram of the image for peaks and valleys and assigning threshold values based on

17

natural value groupings. However, image histograms rarely have definite peaks and

valleys and if histogram equalization was applied during preprocessing to enhance

contrast, the histogram will provide no useful information for choosing thresholds.

Reference [9] does list many helpful tricks, however, which can be applied to an image

histogram to emphasize groupings.

In addition to the lack of defined peaks, the lack of spatial information is another

drawback of using only the histogram to determine thresholds. Therefore, [9] also lists

many techniques that employ spatial information to accomplish thresholding. These

techniques include something called the “busyness” measure and the “co-occurence

matrix,” which both provide information about the similarity of adjacent pixels. Entropy

measures as well as the conditional probability of region transitions can also provide

helpful information about similarity throughout an image. Combining this information

can aid in choosing likely threshold values, which can then be used to extract objects.

These methods are described with more detail in [9]. They incur varying computation and

memory costs, but along with the histogram analysis techniques, they all share the same

goal. They all attempt to make informed guesses about which threshold values will be

most useful for multithresholding segmentation. Post-processing will still be required to

classify regions of interest and to create clean and accurate object borders, so spending

more on a sophisticated multithresholding technique may very well have diminishing

returns.

All previous information in this subsection is extracted from [9], and all of the

following information in this subsection is extracted from [4]. Another segmentation

method similar to the concept of multithresholding is clustering. While thresholding

determines cut-off values which separate one group from another, clustering determines a

representative value for each group. K-means clustering is a common method of

clustering which uses the mean value of each group as the representative value, and it is

18

called “K-means” because there are K clusters and therefore K means. With K-means

come a few limitations. First, the number of clusters, K, must be chosen up front. In the

case of objects in an overhead image, the user must make an educated guess about how

varied the objects of interest in the image are. Guessing a high number leads to excess

computation and memory costs, but guessing a low number may result in a combining of

objects and a loss of data. The non-parametric nature of the K-means algorithm brings

another limitation, which can also be an advantage. The algorithm does not rely on given

assumptions about the distribution of pixel values in the image. This can lead to a less

sophisticated result, but it also allows for a generalized method that does not require prior

knowledge of the image.

K-means clustering is an iterative method which updates the mean of each group as

pixels are re-allocated. Pixels are re-allocated with the goal of minimizing variance (σ2
E),

defined by

σ2
E =

K∑
k=1

∑
x∈Xk

‖xm − µk‖
2, (2.3)

where µk is the mean of the kth cluster, and xm is the value of a given pixel assigned to the

current cluster. It follows then that Mk is the number of pixels assigned to cluster k. Pixels

are reassigned until µk values converge, expressed as

|µk(n + 1) − µk(n)| < ε ∀ k = 1 . . .K, (2.4)

where n is the iteration number and ε is some small value determined by the user.

K-means clustering can be implemented with a relatively simple algorithm, and

MATLAB® already has a built-in K-means function. It can incur large computation and

memory costs depending on the value of K, but it is one of the simpler methods of

segmentation that also has adaptive abilities.

19

2.3 Image Post-Processing Methods

After segmenting an image into regions, further analysis is required to determine

which regions are of interest. In this paper, interesting regions are groups of pixels which

define a building. This section covers various current methods of determining potential

buildings. Some methods are only applicable to regions defined by a certain image

segmentation technique, but these relationships will be clear.

2.3.1 Spectral Patterns.

The first post-processing technique utilizes the frequency domain and is most useful

when applied following edge detection segmentation. The information in this subsection

is gathered from [11]. This source utilizes edge detection but then sorts through the edges

based on an assumption about human tendencies toward organization. It posits that dense

urban areas are constructed with “coherent” directionality, which can be seen in the fast

Fourier transform (FFT) power spectrum of the image. This means that neighborhoods of

buildings generally have a similar orientation, and the frequency domain can be used to

find these dominant orientation angles from an overhead image. Figure 2.6 shows how the

frequency domain can highlight patterns within an image. The bright lines through the

spectral image describe the directions of greatest change in the spatial image. In other

words, the greatest number of edges would be found traveling in these directions through

the image. Most edges in a dense urban scene belong to sides of buildings. Therefore, the

directions of greatest change in an image relate strongly to the axes of the buildings in the

image.

Under the above assumptions of coherent directionality, Figure 2.6 illustrates how the

frequency domain can be used to determine dominant orientation angles of buildings in an

urban scene. These dominant angles are then used to discard extraneous edges with

orientations that do not match the building orientation assumptions. They can also be used

as a guide to adjust detected edges that may be slightly off the dominant angle or to

20

Figure 2.6: An example of a suburban area in (a) the spatial domain and (b) the compressed

FFT power spectrum of the image created in MATLAB®. In an urban scene obeying the

coherency assumption and containing a more dense population of building structures, the

lines through (b) would be more defined than they are for this suburban example. Spatial

data available from the U.S. Geological Survey [1].

lengthen and connect other edges which may be missing relevant pieces. Work in [11]

completes post-processing by combining objects with the same pixel values under the

assumption that building roofs are homogeneous in color. Using spectral patterns in this

way can produce clean and accurate building boundaries. However, it disregards

non-rectangular buildings as well as those buildings which may not follow the patterns it

assumes. These patterns are more reliable in urban scenes with very densely packed

buildings. Therefore, it would not necessarily make sense to apply this technique to all

overhead images.

2.3.2 Defining and Merging Regions.

As the result of any method of segmentation, an image is divided into regions. Often

these regions do not have smooth or clear border lines. Especially if thresholding or

clustering is used for segmentation, there can be pixels belonging to one group of values

peppered throughout a region mostly containing pixels from another group. Also,

21

segmentation often results in blob-like regions rather than well-defined geometric shapes

such as buildings. Edge detection segmentation methods will likely avoid this issue, but

applying a contour-defining algorithm may still improve results. Opening and closing

operators can provide the desired definition to the regions. Opening involves first erosion

and then dilation, while closing is the reverse process. Dilation and erosion are

morphological operations which use a structuring element to comb through an image and

either fill in gaps and expand regions or remove lonely clumps and contract regions,

respectively. Reference [8] uses these morphological operations as well as the following

merging method.

The merging method discussed here is developed by and described in [8]. Image

segmentation often results in multiple regions that actually belong to the same object.

Researchers in [8] found a way to determine which regions define parts of the same

building. First they assume that all three-dimensional objects, including buildings, cast a

shadow. They also assume that buildings are rectangular, and they therefore discard

shadows without a straght edge. Then they dilate the segmented regions and determine if a

particular shadow significantly overlaps more than one region. If the overlapping regions

also overlap each other by an amount determined to be significant, then these regions are

combined, and the new building region is eroded back to a normal size. One drawback to

this merging method is that it fails to merge roof pieces of buildings that do not have a

fully extended L-shaped shadow. For example, if the sun directly faces one side of a

building then only the opposite side will have a shadow alongside it. Figure 2.7 illustrates

how this situation would result in half of the roof having no contact with a shadow and

therefore being missed.

2.3.3 Feature Extraction.

Unless otherwise specified, the information in this subsection is pulled from [8]. After

defining and merging regions, [8] develops a list of features with numerical values to

22

Figure 2.7: An example of a situation when a shadow only extends along one side of a

two-toned building. Data available from the U.S. Geological Survey [1].

quantitatively compare segmented objects in order to decide which of them are buildings.

Since keeping an exhaustive list of feature values for each and every object can be time

and memory consuming, [8] uses a couple “preselection” criteria in order to weed out

improbable objects. Reference [8] assumes a minimum building area and a red roof hue

and therefore discards objects that are too small or that have an average pixel value that

describes a green hue. Once potential buildings have been preselected, [8] creates a list of

over a hundred feature values for the remaining objects.

Some of the features used are geometric form features, including roundness,

compactness, lengthness, and characteristicangles. Reference [8] defines roundness as a

value between 0 and 1 calculated by

roundness =
4πxarea

circum f erence2 . (2.5)

Roundness will be equal to 1 for a perfect circle and 0 for a line. Compactness relates

to the shape, density, and thickness of an object and is equal to the number of times

erosion would have to be applied to the object in order to erode it completely. Reference

23

Figure 2.8: Illustration of the axes locations in (a) an organic object and (b) a rectangular

object. For a rectangular object, the cross axis is irrelevant since there are infinitely many

lines of the same maximum length that connect two border points and are perpendicular to

the main axis.

[8] defines lengthness as the length of the main axis divided by the length of the cross

axis. The main axis is found by drawing a line between the two border points that are

farthest from each other. The cross axis is found by connecting the two border points

farthest from each other which lie on a line perpendicular to the main axis. Two ancillary

axes also exist parallel to the cross axis and on opposing sides of the main axis from each

other. They each lie along the line reaching from the main axis to the farthest possible

border point on their respective sides. The six border points used to create these axes form

the corners of a hexagon. Reference [8] refers to the two corner angles of the hexagon

located at the ends of the main axis as characteristicangles. If the object is rectangular as

illustrated in Figure 2.8, the hexagon resulting from connecting the axes border points will

actually describe the same rectangle that is created by the border of the object. Therefore

the two characteristicangles will be right angles. Since [8] assumes most buildings are

rectangular, they expect the characteristicangles of a building object to be nearly right.

They also use the hexagon created by the axes points to develop a few other feature values

useful in determining whether or not an object is likely to represent a building.

24

Other useful features can be photometric or structural. For example, [8] assumes that

buildings are constructed in groups, and therefore isolated buildings are unlikely. Then as

another feature, numerical values are assigned to describe an object’s proximity to other

likely building objects. It is also assumed that a shadow will be present next to a building,

since quality aerial images can only be taken on a clear day. Shadows are extracted by

assuming that pixels with a value below a certain threshold are dark enough to be

considered shadows. This feature can take on a numerical value by counting the number

of overlapping pixels between the object in question and a shadow object after a

temporary double dilation has been applied. These are just a few examples of many

interesting features that can be helpful.

The feature extraction method of decision-making provides thorough and reliable

results as long as the conditions in the image follow the many assumptions made in the

process. However, the assumptions do decrease the value of the method as a general

building extraction algorithm. Furthermore, storing over a hundred values for every single

potential building object may be impractical, especially when obtaining each value

requires complex calculations. Making decisions to weed out objects as features are

calculated may yield results with similar accuracy.

2.4 Geolocation Methods with Unobstructed Lines of Sight

The rest of this chapter concerns signal processing and specifically signal processing

with the goal of geolocation. The most useful piece of signal information to use for

geolocation is the signal time of arrival (TOA), but there exist many viable methods for

utilizing this information to locate the source. This section focuses on different

approaches for using TOA to locate a radio frequency (RF) signal source when there are

no obstructions to the lines of sight between the source and the sensors.

25

2.4.1 Analytical Approach.

All of the information in this subsection is derived from [3] unless otherwise specified.

Reference [3] discusses methods of using multiple sensors to locate a single source in a

two-dimensional plane and discusses a way to use hyperbolic curves to accomplish this

geolocation. The hyperbolic curves in question are those created by time difference of

arrival (TDOA) estimates, defined as the relative differences in signal detection timing

among the sensors. The relative time at which a sensor first detects a signal of interest is

determined through cross-correlation, which essentially creates a copy of the signal and

compares it to data received by the sensors [3, 10]. The detection time is defined as the

location in time where the signal copy is aligned to match a section of data received by the

sensor. Estimating TDOA is easier than directly estimating TOA since there is no way to

know when the received signal was actually transmitted. A method is described which is

accurate for both close sources and distant sources. It also utilizes an increase in the

number of sensors to increase the accuracy. Some of the previous methods can only utilize

TDOA estimates from a number of sensors equal to one greater than the number of

unknown coordinates in the source location. In the two-dimensional case, this means

those methods can only benefit from the information from two TDOA estimates and

therefore three sensors. Reference [3] begins with an arbitrary configuration of M sensors

and a single source with an unknown location in a two-dimensional plane. In order to find

the location of the source, TDOA estimates are first generated using a cross-correlation

technique and then estimated with respect to one receiver, which is thereafter referred to

as the first receiver. The TDOA of the ith sensor is given by

di, j = di − d1 for i = 2, 3, · · · ,M, (2.6)

which is used to form the estimated TDOA vector ~d = [d2,1, d3,1, · · · , dM,1]T . The

covariance matrix of the TDOA vector is given by

26

Q =

{
2T
2π

∫ Ω

0
w2 S (ω)2

1 + S (ω)tr(N(ω)−1)
x
[
tr(N(ω)−1)Np(ω)−1 − Np(ω)−111T Np(ω)−1

]
dω

}−1

,

(2.7)

where 0 to Ω is the frequency band, T is the observation time, tr(∗) denotes the trace of

matrix ∗, S (w) is the signal power spectrum, N(ω) = diag {N1(ω),N2(ω), · · · ,NM(ω)} is

the noise power spectral matrix, Np(ω) is the lower right M − 1 by M − 1 partition of

matrix N(ω), and 1 is a unity vector with length M − 1. The noise has a mean of zero and

a covariance matrix equal to Q. The unknown position of the source is denoted (x, y), the

known location of any sensor i is denoted (xi, yi), and the Euclidean distance between the

source and sensor i is denoted ri. Therefore,

ri,1 = cdi,1 = ri − r1, (2.8)

where c is the signal propagation speed. Since the only unknown values are the source x

and y, which are within the expression for ri, the solution to this system of equations

yields the location of the source. Equation (2.8) looks simple, but the solution is actually

very complex, because the system of equations is nonlinear. Two of the possible

approaches to solving the system are linearization through Taylor series expansion and

spherical interpolation (SI). The Taylor series expansion method is more accurate than SI,

but requires solving iteratively after linearization which can be costly. To linearize by

Taylor series expansion, an initial source position (x0, y0) is guessed, and then after each

iteration the position guess is updated by a deviation amount (∆x,∆y) calculated within

the iteration by

∆x

∆y

 = (GT
t Q−1Gt)−1GT

t Q−1~ht, (2.9)

where

27

~ht =

r2,1 − (r2 − r1)

r3,1 − (r3 − r1)
...

rM,1 − (rM − r1)

,

Gt =

x1−x
r1
−

x2−x
r2

y1−y
r1
−

y2−y
r2

x1−x
r1
−

x3−x
r3

y1−y
r1
−

y3−y
r3

...

x1−x
r1
−

xM−x
rM

y1−y
r1
−

yM−y
rM

,

where Q is defined by Equation (2.7), and x = x0, y = y0. Iteration continues until the

deviations are smaller than a pre-determined threshold, and the final (x, y) values are the

solution for the source location.

SI deviates from Taylor series expansion by squaring Equation (2.8) and expanding r2
i

in terms of x, y, xi, and yi. Then, (x2
1 + y2

1) is subtracted from both sides of the equation,

and x and y are solved in terms of r1. The intermediate result is inserted back into the

same equation that was just used to solve for x and y so that r1 is the only unknown. A

value of r1 is found to minimize the least-squares (LS) equation error, and this value is

substituted into the intermediate result for x and y to find the source location. The SI

method does not require iteration, but it does require LS calculations which are not trivial,

and according to [3] the solution is not optimum.

2.4.2 Numerical Approach.

Another method for estimating the location of a signal source using TDOA is a

maximum likelihood estimator (MLE) technique known simply as a grid search. This

method is decribed in [5] and is as simple as it sounds. This method is similar to a

“guess-and-check” method, except that it systematically guesses every possible answer if

the possibilities are discrete and finite. If the possibilities are continuous values or are an

28

infinite set, it is impossible to guess every potential answer, but small step sizes can be

chosen to mitigate the error. The way the guess is checked is by finding the difference,

di f f , between the actual data and the data which would be produced if the guess were the

true location. This difference is defined as

di f f (θ̂) = E
[
(θ̂ − θ)2

]
, (2.10)

where θ̂ is the estimated data and θ is the actual data. Then whichever guess produces the

smallest di f f is the most likely solution. This method is especially applicable to image

processing, since locations are defined in terms of discrete pixels, and there are a finite

number of pixels. In reality, the pixels in an overhead image correspond to small regions

of ground locations, which are continuous values. However, as long as the overhead image

encompasses the locations for all sensors and for the source, it is actually possible to

check every single pixel and therefore, under ideal conditions, to guarantee that the MLE

for the location in the image is found within a measurement resolution equal to half of the

ground sample distance. The downside to this method of course is that checking every

single pixel is time consuming, and the computations involved in finding di f f at each

pixel can be costly. The method does require very little storage though, since it does not

need to store information about the guesses that do not produce the smallest di f f .

2.5 Fusion of Signal Information with Image Information

This section focuses on the novel idea of how to incorporate the discoveries made

through image processing in order to more accurately process the signal information when

obstructions do exist in the line of sight (LOS) between the source and the sensors. If the

signal cannot travel in a straight line from the source to the sensor, then it must take

another route to the sensor. This route will most likely involve a reflection off of another

building in the scene, which will delay the signal TOA. Thanks to the image processing

techniques discussed earlier in the chapter, the locations of the buildings in the scene can

29

be extracted. Therefore, obstructions as well as potential reflection points are known. The

following subsection discusses a method of finding the shortest path from a known source

location to a single sensor. This concept can then be extended to multiple sensors and to a

source with an unknown location.

2.5.1 Shortest Path.

Information in this subsection is provided by a faculty member at Air Force Institute

of Technology (AFIT) in the form of an unpublished draft specifically as a contribution to

this research [7]. The goal is to find the shortest unobstructed path between a transmitter

and a sensor, both with known locations. In this thesis, the transmitter location is not in

fact known, but it is easier to understand the method of finding the shortest unobstructed

path if the problem is first approached using known locations. Here path length is

measured in Euclidean distance, since geolocation is dependent on TOA, and a signal’s

travel time is directly proportional to distance. The problem is approached in [7] with the

assumption that there are multiple receivers and transmitters, all with known locations.

However, this subsection focuses solely on the case of one receiver and one transmitter

with known locations, since the extension is straightforward and discussed in part in the

following subsection. Nomenclature refers to the obstructions as well as the reflective

objects as buildings, and reflective surfaces are referred to as walls. Of course since the

problem remains in a two-dimensional plane, walls are simply lines with finite lengths.

This dimensionality is valid, since it is safe to assume that any building will be tall enough

to intercept the signal and also that in an urban environment the ground is flat enough not

to interfere with the signal.

The problem would be even simpler if buildings could be treated as points in the

plane, but unfortunately that would be a gross oversimplification. An acceptable

simplification that can be made, however, is the assumption that the RF signal emitted by

the transmitter does not obey the law of reflection. To provide a memory refresh from high

30

Figure 2.9: Illustration of the law of reflection.

school physics, the law of reflection states that the angle of incidence is equal to the angle

of reflection. Figure 2.9 illustrates the locations of these angles. In the case of RF waves

and building walls, however, [7] explains convincingly that Lambertian reflection occurs

instead. Due to the polarization of RF waves and the roughness of building walls, the

angles of incidence and of reflection are reasonably unpredictable. Fortunately, as the

roughness of a surface increases, thereby increasing the complexity of the problem, the

more the surface actually scatters the RF waves, which allows the problem to be assumed

away. The rougher a surface is, the less concentrated the reflection is in a specific

direction. The reflected signal is therefore assumed to be reflected with equal strength in

all outward directions.

When searching for the shortest path, the first step is to check for obstructions. The

test for obstructions involves checking if any wall lines intercept the line between the

receiver and the transmitter. If the receiver has an unobstructed LOS to the transmitter,

then the shortest path is along that LOS, and no extra calculations are required in order to

find the path. However, if the path is obstructed, all alternate paths must be considered and

compared to one another.

31

To find the alternate paths, the first step is to determine which walls are “visible” to the

transmitter. “Visible” walls are walls that are positioned and oriented in a way such that

the transmitted signal can be reflected off the wall. In [7], visibility is determined using

the normal line of each wall, like the one pictured in Figure 2.9. The unit normal vector

pointing out from a particular wall is denoted Ω̂w, where w denotes the particular wall.

Other data specific to each particular wall are the end points and the midpoint of that wall.

In [7], Ω̂w is found by using the wall endpoints in conjuction with the property of

cross-products which says that the magnitude of the cross-product of two perpendicular

vectors is equal to 1. This property is helpful, since the wall endpoints can be used to

create a unit vector which describes the direction along the wall and therefore

perpendicular to the normal vector. The unit vector along the wall must point from the left

end of the wall to the right end, as defined when facing the wall from the outside of the

building. Keeping track of left and right in this manner is significant, because flipping this

vector will result in a normal vector pointing into the building, which will lead to

inaccurate reflection results.

The information describing each wall is then stored in an exhaustive list containing all

walls. Keeping track of which walls belong to the same buildings is not necessary since

the outward direction and location of the wall is all that is needed to determine reflections.

Once Ω̂w is calculated for each wall, it can be used to determine visibility. To determine if

a wall with normal vector Ω̂w and midpoint ~rw is visible to both an emitter point ~a and a

receiver point ~c, [7] uses the following two conditions, which are also illustrated in the

Figure 2.10 example.

(~a − ~rw) · Ω̂w > 0 and (~c − ~rw) · Ω̂w > 0 (2.11)

It is important to remember that an emitter point ~a in this case can refer to either the

original transmitter or to another point from which the signal has been reflected. Likewise,

32

Figure 2.10: Example illustration of Equation (2.11).

~c denotes either a receiver or a point to which the signal will travel for another reflection.

Also, the midpoint of the wall ~rw is specified in Equation (2.11) for ease of reference and

simplicity. In reality, any point on the wall can be used as the reflection point, since it is

assumed that the signal is emitted in all directions from ~a. The optimum reflection point

on the wall can be calculated instead of using the midpoint, but the impact on the path

length is not significant. Equation (2.11) can be applied at each leg of each path to find all

possible paths from the transmitter to the receiver. The complexity comes from two issues.

The first is that each leg of each path must be checked for obstructions. The second issue

pops up if one of the path legs is found to be obstructed. Just because one point on a wall

is obstructed from a point on another wall does not mean that all points on both walls are

obstructed from one another. Therefore, if an obstruction is found, all possible reflection

points must also be checked for obstructions before disregarding that path.

There are a few options for keeping track of paths and their lengths. A distance matrix

can keep track of each unobstructed view between walls and other points. Keeping track

this way cuts down on computation time since path leg calculations are only calculated

once and can be reused for alternate paths. This can be especially useful when the

33

problem is expanded to incorporate multiple sensors. However, a distance matrix like this

also takes up a lot of memory. To reduce storage, [7] also suggests using dynamic storage

in the form of linked-lists. This way, the distance between pairs of points is only

calculated if it will be used, and then it is stored to eliminate recalculation. Another option

is to store only the shortest path length and compare each new path calculation to the

stored value. For geolocation using signal TDOA, only the time it takes for the signal to

travel the path has significance. Which path the signal takes does not matter at all. This

cuts down the storage significantly but also increases computation time since path legs

used in multiple routes are calculated multiple times.

Another way to cut down computation cost is to actually keep track of which walls

belong to which buildings. Since no more than two walls from the same rectangular

building can be visible from any single point, eliminating the need to check every wall

reduces computation time. Approaching the problem this way, however, does have further

implications. Other modifications would have to be made to the process to make this

method work. Reference [7] outlines a method which involves treating buildings as nodes

while taking into consideration that unlike a node, a building takes up space. This method

requires knowledge about the shape of every building, and does add complexity in that

respect. The method used later in this paper avoids this added complexity as well as the

excess storage involved in a distance matrix, but unfortunately it does involve calculating

some distances multiple times.

2.5.2 Applying Multipath Analysis to Geolocation.

Extending the current research and concepts discussed in this chapter and combining

them to improve upon previous methods of geolocation is a novel exploration and is the

goal of this thesis.

34

III. Methodology

This chapter discusses the process used to develop a transmitter geolocation tool

which incorporates both image information and signal information. The chapter

begins with a description of building extraction from overhead, aerial, orthorectified RGB

images. The algorithm as a whole is an original creation, but the parts which make up the

algorithm are not original. Each step and technique has been utilized in other research in

some way. This building extraction algorithm simply seeks to find an effective and

efficient combination of techniques in order to extract image information which can be

used to improve geolocation. The only inputs required for the algorithm are the particular

image, an estimate in pixels of the smallest expected building perimeter in the image, and

an estimate in pixels of the largest expected building perimeter in the image. These two

estimates are not essential and in fact should be made conservatively, but including them

significantly decreases memory and computation costs as well as the possibility of

returning false positives. Section 3.1 presents the preprocessing tools employed to

efficiently and effectively utilize image information. Section 3.2 explains the type of

image segmentation used, including how shadow objects are extracted and processed.

Then, Section 3.3 discusses how information about the image segments is utilized in

conjunction with information about shadow objects to determine the locations of buildings

in an image.

The remainder of the chapter discusses how the information about building locations

is used to improve transmitter geolocation. Section 3.4 discusses how these locations are

used to determine which sensors have an obstructed LOS to the transmitter. Section 3.5

discusses how to find the shortest path between a transmitter and a sensor, even if that path

includes reflections from building walls. Section 3.6 concludes the chapter with a

description of how paths which include reflections can be incorporated into the TDOA

35

Figure 3.1: Raw image data which has been orthorectified. Data available from the U.S.

Geological Survey [1].

estimation process to improve performance. The techniques described to perform

traditional geolocation as well as those used to find path information are not original.

However, the combination of these techniques with the image information is an original

pursuit.

3.1 Image Preprocessing

Throughout the following discussion of image processing for building extraction, each

step is applied to the image in Figure 3.1 and illustrated in corresponding figures.

The first step in working with this image requires converting the image to a grayscale

intensity image. This allows efficient manipulation of data and ease of comparison among

pixel values. The RGB values in Figure 3.1 are converted to V channel intensity values in

the HSV color model. This conversion is accmplished by averaging the three channel

contents from the RGB color model. The result is shown in Figure 3.2. Also shown in

Figure 3.2 is the result of applying contrast enhancement to the intensity image. Before

enhancing the contrast in the image, a simple median filter with a 3 × 3 kernel is applied to

36

Figure 3.2: (a) The intensity channel of the HSV color model and (b) the image after

contrast enhancement. Original image data available from the U.S. Geological Survey [1].

lightly add smoothing while retaining edge integrity. The method of contrast enhancement

used involves mapping intensity values to new values in order to stretch the present range

of intensity values onto the full available range with 0 as the lowest value and 255 as the

highest value. This is accomplished by saturating the lowest 1% of the intensity values at

0 and the highest 1% of the intensity values at 255.

3.2 Image Segmentation

This building extraction algorithm relies on the assumption that every building casts a

shadow. Therefore, the image segmentation process first creates a set of pixels likely to

belong to shadow objects and then clusters the remaining pixels. All pixels below an

intensity threshold value of 50 are considered dark enough to have the potential to be

shadows. These pixels are separated from the original image, and a new black and

white (BW) image of the same size is created with the shadow pixels as logic 1’s and all

remaining pixels as logic 0’s. This BW image is then morphologically “filled” to remove

holes and “closed” to connect pixels which may belong to the same shadow. Then, all the

pixels in the original image which correspond to the logic 1 pixels in the BW image are

37

set to zero, as a way of separating these potential shadow pixels from the remaining pixels

and also as a form of labelling. The following subsection describes the clustering process

for the non-zero, non-shadow pixels, and the subsequent subsection describes how the set

of shadow pixels is further processed.

3.2.1 K-means Clustering.

All remaining non-zero pixels in the image have the potential of belonging to a

building object. Since building roofs tend to be largely monochromatic, grouping similar

pixel values is an effective way to segment an image into potential building objects. This

grouping is accomplished using K-means clustering, which is described in full

mathematical detail in Section 2.2 of Chapter II. A K value of 6 is used in this algorithm,

since an even value is ideal for subplotting purposes. Clustering the pixels into 4 sets

proves inadequate for creating the necessary separation between objects, and clustering

into 8 sets requires an excessive amount of computing power and memory. Also,

increasing the number of cluster sets breaks building objects into smaller and smaller

pieces, which makes them difficult to completely recover later on.

MATLAB® contains a built-in function which accomplishes K-means clustering.

Inputs to the function are used to instruct the function how to proceed with exception

cases and how to choose the initial K means. If throughout the iterative clustering process,

a cluster set loses all its members, the pixel in the image which has a value furthest from

the mean pixel value of the whole image is placed into this set in order to avoid empty

sets. The initial K means are chosen randomly using a uniform distribution with a range

equal to the range of pixel values being clustered. Uniformly choosing the initial means

helps ensure separation among dissimilarly colored objects. On top of these exception and

initialization inputs, another input is included in the function which replicates the

clustering three times, each with different initial means, and chooses the clustering

solution which results in the smallest error of the three. The error in each solution is

38

Figure 3.3: Image after clustering has been accomplished. Original image data available

from the U.S. Geological Survey [1].

calculated by summing the distances between each pixel and its corresponding cluster

mean. Since the clustering process contains random elements, the potential exists for

pixels to be allocated differently each time. This replication step limits the variation in the

overall building extraction algorithm results. The downside, however, is that K-means

clustering is expensive to begin with, and replicating in this way may not be possible. The

processor used in this research is capable of replicating a maximum of three times due to

the length of the variables, and in cases of larger images, replicating is not possible at all.

However, with a more powerful processor, replicating as many times as possible is

recommended to produce more consistent results.

Since the pixels which have been set to zero have already been allocated to the shadow

set, they are ignored during the clustering process. Figure 3.3 shows the image after

clustering is accomplished. Each pixel value is set to equal the mean value of the cluster

set to which it belongs, and the pixels in the shadow set are set to zero.

39

Figure 3.4: Individual sets of clustered pixels. Original image data available from the U.S.

Geological Survey [1].

After clustering is accomplished, a new BW image of the same size as the original

image is created for each cluster set. Within each BW image, the pixels belonging to that

cluster set are set to logic 1’s. Figure 3.4 shows how these cluster sets have been separated.

Once the cluster sets are separated in this way, they can be looked at individually.

Each BW image is essentially morphologically “opened” in order to increase separation

among objects. Especially in the case when a building is the same color as the

surrounding area in the image and the edges are thin, the edge pixels may not all be

detected. This can cause building pixels to connect undesirably with surrounding pixels. It

is essential to remove as many of these undesirable connections as possible without

damaging each object. Since a morphological “opening” is basically an erosion followed

by a dilation, this step is expanded to increase effectiveness. A double erosion is followed

by a removal of “H” connections and spurs, as well as by a “clean” operation, by an actual

“open” operation, and finally by a double dilation to return the objects to their original

size. Both erosion and dilation are accomplished using a 3 × 3 structuring element. The

40

“clean” operation simply removes any isolated pixels which are not connected to any

other pixels. “Spurs” are pixels which are isolated aside from a single connection point,

and “H-connected” pixels are those which form the connection between two lines of

pixels. The following is an example of how H-connected pixels are removed:

1 1 1

0 1 0

1 1 1

becomes

1 1 1

0 0 0

1 1 1

. (3.1)

Once these morphological operations are applied, individual objects are found by

tracing the exterior boundaries of connected pixels within each BW image. Once all the

objects have been segmented, the cluster set to which they belong is no longer relevant

information. Finally, each object is compared to the provided estimates of the minimum

expected building perimeter and of the maximum expected building perimeter. Since this

is still an early stage of the algorithm, potential building objects should be discarded very

conservatively. Therefore, only objects with perimeters less than 1
8 of the estimated

minimum or greater than 4 times the estimated maximum are discarded.

It is especially important to be conservative with the maximum perimeter allowed,

since object edges can be jagged, which causes the perimeter calculation to be deceptively

large. Using the perimeter of the convex hull of the object rather than the perimeter of the

object itself would mitigate the inflation issue caused by the jagged edges. However,

finding the convex hull of the object is more time-consuming and computation-intensive

than simply using the perimeter of the object that is already found during the

boundary-tracing step. Perimeter comparisons are made multiple times throughout the

algorithm, and the issues presented by irregular shapes or jagged edges are not prevalent

enough to warrant the added complexity of checking the convex hull each time. Also, due

to the number of clusters, the image is segmented into so many pieces that it is rare for an

object to be larger than a building. Objects that are too large usually represent a forest, a

41

long road, or some sort of border around the image. Even a conservative maximum

threshold will discard these objects. As long as vital building pieces are not discarded, the

exact thresholds used in this step are not important. While this step does mitigate the

possibility of returning false positives later on, the purpose of this step is mainly to

decrease memory and computation costs by decreasing the number of objects which must

be considered in Section 3.3.

3.2.2 Shadow Segmentation and Processing.

The building extraction algorithm places a lot of emphasis on shadows. This

subsection discusses how the set of pixels which have been set to zero are further

processed into shadow objects. Initial shadow objects are found by tracing exterior

boundaries of the connected shadow pixels. Then shadow objects that are too small or too

large are discarded. Just as with the initial discards of building objects in the previous

subsection, these discards are mainly to reduce processing time and memory cost.

Therefore, these discards are conservative as well. Any object with a perimeter smaller

than 1
4 of the smallest expected building perimeter or larger than twice the largest expected

building perimeter is discarded. The smaller value is based on the assumption that a

shadow will overlap at least one side of the building. Therefore the length will be at least

1
4 of the building perimeter. Since the perimeter of the shadow will be at least double its

length, this minimum threshold is conservative enough to avoid discarding relevant

shadow objects. The same conservative buffer exists for the maximum threshold used,

since a shadow shouldn’t overlap more than two sides of a building. This preliminary

weeding process decreases the computation time for the remaining shadow processing

steps. The pixels which still have the potential of belonging to shadow objects are

highlighted in Figure 3.5.

It is clear from Figure 3.5 that at this point, there still exist many pixels in the shadow

set that do not actually belong to shadow objects. However, before the objects are

42

Figure 3.5: Pixels which have the potential to belong to shadow objects. Original image

data available from the U.S. Geological Survey [1].

processed for shadow characteristics, it is important to combine any pieces that may

belong to the same shadow, since the defining shadow characteristics include object

descriptors such as shape and area. In comparison to Figure 3.4, Figure 3.5 shows that

there are much fewer pixels in the shadow set than in any of the object sets. Due to this

scarcity, there is less of a danger of connecting pixels which should not be connected.

Therefore, a double dilation is applied, followed by a closing operation.

Individual shadow objects are then found by tracing the exterior boundaries of

connected pixel regions. A few preliminary conditions are then applied to each of these

objects to discard those which are unlikely to represent shadows. The conditions required

for retaining an object include an eccentricity greater than or equal to 0.8, an area less than

or equal to 1
4 of the maximum expected building area, and as before, a perimeter between

1
4 of the minimum expected building perimeter and double the maximum expected

building perimeter. The eccentricity of an object is equal to the eccentricity of the ellipse

which has the same second-moments as the object. The eccentricity of this ellipse is equal

to the ratio of the distance between the foci of the ellipse and the length of the major axis

of the ellipse. The eccentricity of a circle is zero, and the eccentricity of a line is one.

43

Since a shadow lies along the sides of a building, it should be shaped more similarly to a

line than to a blob. Even if a shadow object lies along two sides of the building and is more

L-shaped, it will still have an eccentricity very close to one. The area condition is based

on the assumption that a shadow is much smaller than the corresponding building. The

maximum building area estimation to which the shadow area is compared is found simply

by squaring 1
4 of the maximum expected building perimeter. Once again each of these

conditions in this preliminary discard step is fairly conservative, but when the conditions

are applied together, they are discriminating enough to remove a large portion of unlikely

shadow objects. This is useful for the following processing steps, since computation time

increases significantly with the number of shadow objects which must be processed.

Now that all of the remaining objects have a strong likelihood of representing

shadows, it is helpful to determine which side of each shadow is the side which overlaps

the respective building. Later on, when the algorithm searches for building objects which

overlap the shadow objects, the algorithm needs to know which direction to travel in order

to look for this overlap. This direction is referred to as shadowdirection. It is safe to

assume that shadowdirection will be the same for all shadows and buildings within the

image. This is not technically true, since the Earch is round, and Sun rays can be modeled

as emitting from a point source, due to the extremely large distance between the Sun and

the Earth. However, also due to the extremely large distance between the Sun and the

Earth, as well as to the small scale of the images to which this building extraction

algorithm applies, the differences in ray angles are negligible.

It is therefore possible to find the shadowdirection by averaging the directions

calculated from each shadow and building pair throughout the image. This direction is

essentially the angle of a vector which can be thought of as the vector pointing from the

corner of an L-shaped shadow to the center of the building rectangle. Unfortunately, this

vector is not as simple to find as it sounds, especially since not all shadows are L-shaped

44

depending on the orientation of the buildings, and also because the locations of the

building centroids are unknown at this point. Therefore, this step relies solely on

information about each potential shadow object. Fortunately, the manner in which

shadowdirection is used later on does not require extreme precision. The algorithm

essentially just needs to know whether to look up, down, left, or right.

The angle for each shadow object is found by taking the angle of the vector which

points from the centroid of the shadow object to the midpoint between the two adjacent

vertices furthest from each other in the convex hull of the shadow object. The convex hull

is the smallest convex polygon which fully encloses the object. For a non-jagged, perfectly

L-shaped object with singular thickness, this hull will describe a triangle. If this perfectly

L-shaped shadow object completely overlaps two sides of the corresponding building, the

hypotenuse of this hull triangle will cut straight through the building, with the midpoint of

the hypotenuse in the same location as the centroid of the building. Even if the shadow

object does have thickness, jagged edges, and is only vaguely L-shaped, the two adjacent

convex hull vertices which are furthest from each other will still be the endpoints of a line

segment which essentially describes the hypotenuse of the ideal case. Ideally, the vector of

interest should point from the corner point of the “L” to the midpoint of these vertices, but

this corner point is very difficult to find in a jagged and only vaguely L-shaped object with

thickness. This is why the centroid of the object is used instead. It is very simple to find

and provides separation from the endpoint of the vector. The point being used for the

endpoint of the vector lies on the exterior boundary of the convex hull and on the side of

the shadow object which overlaps the building. The centroid of the shadow object is

within the convex hull. Therefore, a vector pointing from the centroid of the shadow

object to the point found on the convex hull of the shadow object will point in the same

general direction as a vector pointing from a shadow to its corresponding building.

45

What if all the buildings in the image are oriented in such a way that there are no

L-shaped shadows? Even if all of the shadows only overlap one side of their respective

buildings, the above method of finding the vector angle of interest is still valid. Intuitively,

the furthest adjacent vertices of the convex hull of a rectangular shadow object will be the

points describing the two longest sides of the rectangle, which in the case of the shadow

will run parallel to the overlapping building side. The fact that the shadow objects likely

do not describe perfect rectangles is actually helpful. The side of the shadow object which

overlaps the building is much more likely to be a straight edge than the opposite side. The

more jagged opposite side will create extra vertices in that side of the convex hull.

Therefore, the longest side of the convex hull of the shadow object should still be on the

side which overlaps the building. Once again, the centroid of the object will be within the

convex hull, which allows enough separation to create a vector from the centroid of the

shadow object to the midpoint of the longest side of the convex hull of the shadow object.

This vector will point in the same general direction as a vector pointing from a shadow to

its corresponding building.

The direction of this vector is important for finding pieces of the buildings later on in

the algorithm, but it can also be used to help further process the shadow objects.

Unfortunately, this is somewhat of a catch-22. At this point, there potentially still exist

objects in the shadow set which are not actually shadows. Using shadowdirection to weed

out these objects seems paradoxical when these objects played a role in finding

shadowdirection to begin with. In order to filter out this corruption, shadowdirection is

therefore recalculated. Remember, shadowdirection is the average direction of all the

directions found from the individual objects. It is safe to assume that the majority of the

shadow objects are actually shadows. As discussed above, a precise shadowdirection is

not a necessity, but precision can still be improved with an iteration step. The value of

46

shadowdirection is therefore recalculated ignoring any of the directions which generally

point in the opposite direction from the previously calculated shadowdirection.

Now that shadowdirection is a little more precise, it can be used to discard objects

which likely do not represent shadows. Once again, the longest side of the convex hull of

each object is found, and it is compared to the other points in the object. For ease of

computation, the midpoint of this side is compared to the other vertices of the convex hull.

Using the midpoint as the origin reference, if any of the other vertices lie within the same

quadrant as shadowdirection, then this object is discarded. The assumption here is that

this quadrant should be empty of shadow pieces, since it is where the building is located.

It is explained above that shadow objects which are more rectangularly shaped than

L-shaped should still theoretically create a convex hull with its longest side located along

the building. However, there is a larger potential for error with these shadows than with

L-shaped shadows. Therefore, before discarding an object that does not meet the quadrant

requirement, the object shape is evaluated. If the object not meeting the quadrant

requirement has its centroid located within the object and also has an extent ratio greater

than 0.7, then the object is retained. It is explained above that the centroid of an object

will always be located within the convex hull of the object, but this does not mean that the

centroid will necessarily be located within the object itself. This is, however, likely to be

true only if the object is rectangularly shaped, due to the earlier eccentricity requirement.

Unfortunately, the centroid location is not enough to claim that the object is a shadow. For

example, a dark tree line may be rectangularly shaped with an included centroid. This is

when the extent requirement comes into play. A tree line will be much more organically

shaped than a building shadow, which will appear as a more filled-in rectangle. Therefore,

the shadow will have a larger extent, which is the ratio of the pixel area of the object to the

pixel area of the convex hull of the object.

47

Figure 3.6: Final set of shadow objects. The direction labelled in cyan describes the

direction of travel from each shadow to find the corresponding building. Original image

data available from the U.S. Geological Survey [1].

The final set of shadows which are retained along with shadowdirection are shown in

Figure 3.6. It is evident that there are still some objects retained in the shadow set that are

not building shadows, but this does not necessarily mean that erroneous objects will be

picked up as buildings later. There is still a lot of building processing which occurs in

Section 3.3 to eliminate these.

3.3 Image Post-Processing

Now that the image has been segmented into shadow objects and possible building

objects, and the direction from the shadows to their respective objects has been calculated,

it is time to use all of this information to separate out the objects which most probably

represent buildings or parts of buildings. The basic concept involves searching for those

objects which overlap the shadow in the direction of shadowdirection.

Toward that end, the shadow objects are manipulated and eroded in two separate and

different ways. In one way, the shadow object is eroded until only the edges which are

likely to overlap the buildings remain. In the other way, the filled convex hull of the

48

Table 3.1: Shadow Erosion Structuring Elements

Unit Circle Section Direction from Shadow to Object Structuring Element

Up 67.5◦ ≤ shadowdirection ≤ 112.5◦ [0 0 0 0 1 1 1]T

Down −67.5◦ ≥ shadowdirection ≥ −112.5◦ [1 1 1 0 0 0 0]T

Left |shadowdirection| ≥ 157.5◦ [0 0 0 0 1 1 1]

Right |shadowdirection| ≤ 22.5◦ [1 1 1 0 0 0 0]

shadow object is eroded to a diagonal which is likely to cut through the building which

corresponds to the shadow. Once these two manipulations are performed separately on the

shadow object, a search is performed for building objects which overlap either of the

remaining sets of pixels. This process will be explained further in the following

subsections and illustrated in Figure 3.7, but before the shadow objects can be

manipulated and eroded, first the structuring element(s) used for the erosion must be

determined. The value of shadowdirection is used to determine which structuring element

is used to erode the individual shadow objects. The unit circle is divided into eight

uniform sections, referred to intuitively as “up,” “down,” “left,” “right,” “up left,” “up

right,” “down left,” and “down right.” Table 3.1 shows the structuring element dictated by

each of the four basic eighths of the unit circle. If shadowdirection lies in one of the

remaining four compound eighths instead, then erosion is simply performed twice, once

with each respective structuring element. This double erosion is not actually a compound

erosion, however. Instead, each erosion is performed on the original shadow object, and

the remaining pixels from each erosion are recombined. If the double erosion were

applied compoundly, relevant shadow edges could potentially be lost.

49

3.3.1 Erosion of Shadow Object and Overlap Search.

Before the shadow object is eroded, it is dilated once with a basic 3 × 3 structuring

element of 1’s to cause a slight encroachment into the region where the shadow is likely to

overlap building objects. Then the shadow object is eroded using the structuring element

found above. This erosion is performed manually and differs from the traditional method

of erosion. The structuring element is slid like a window across the entire object, and a

new object is created in which the only pixels which are set to 1 are those which

correspond to the center pixel of a set in the original object which “matches” the

structuring element. A “match” here is defined as a set which contains at least one 1 with

none of the 1’s lying in the locations which correspond to the 0’s in the structuring

element.

Then, to further erode the shadow object towards its edges of interest, even more

pixels are discarded. These discarded pixels are determined by a rule which is dictated by

shadowdirection. This time, the unit circle is divided into quarters corresponding to the

quadrants of the Cartesian coordinate system. Then, each remaining pixel in the shadow

object is analyzed one at a time. Treating the pixel as the origin, if any other pixels in the

shadow object lie in the same quadrant as shadowdirection, then the origin pixel is

discarded. Ideally upon completion of this operation, the shadow object is reduced to

sparse line segments which describe the edges of the shadow furthest in the direction of

shadowdirection and therefore most likely to overlap the building which created the

shadow. This step not only mitigates the risk of retaining erroneous pixels from an oddly

shaped shadow object, but it also helps reduce the computation time later on by reducing

the number pixels which must be checked for overlap with the building objects.

At this point, the shadow object is actually eroded even further. Due to the way this

program searches for overlaps, which will soon be described in this subsection, there is a

risk of picking up erroneous objects near the endpoints of the shadow skeleton. To

50

mitigate this risk, an eighth of the the remaining shadow pixels are discarded at each of

the two extremes. These extreme points are found by once again using shadowdirection.

The pixels are first analyzed with regards to the horizontal coordinate and then again with

regards to the vertical coordinate. If the cosine of shadowdirection is positive, then the

pixels discarded are those located at a horizontal coordinate within the maximum eighth

of the horizontal coordinates. Otherwise, if the cosine of shadowdirection is negative,

then the pixels discarded are those located at a horizontal coordinate within the minimum

eighth of the horizontal coordinates. The same logic is used to discard pixels based on the

sine of shadowdirection and the vertical coordinates. In Figure 3.7, the green outlines

describe the exterior boundaries of the shadow objects. The pixels highlighted in magenta

are those that remain following the erosion steps described in this subsection.

Finally, it is time to search for building objects which overlap the remaining pixels in

the shadow object. Rather than combining the shadow pixels from all the shadow objects

and looking for overlaps with any in the set, it is more helpful to keep track of which

building objects overlap shadow pixels from the same shadow object. Therefore, the

shadow objects are compared for overlaps one at a time. For each shadow object, every

single building object is checked for overlap with that particular shadow. To be exact, the

exterior boundary of every single building object is checked. It is significantly cheaper

computationally and just as effective to check only the boundary pixels for overlap as

opposed to checking all of the pixels in the filled object. Furthermore, each building object

is actually checked five times during this step. After each check, the set of shadow pixels

is incrementally translated in the direction of shadowdirection. This sounds strange but it

is actually the same concept as that used by [8] when they check for overlaps. Intuitively,

a shadow edge does not actually overlap a building edge. In fact, they are adjacent to one

another. Throw in the imprecise nature of finding these edges, and it becomes clear that

steps must be taken in order to create the necessary overlaps. Reference [8] simply double

51

dilates both objects. That approach runs the risk of overcrowding and producing overlaps

where they should not exist. That is why this approach focuses on the edge of interest in

the shadow object, and leaves the building edges in their true locations. The quintuple

translation of the shadow pixels essentially is the same as a double dilation applied to both

objects, just in a more controlled direction. Translating the shadow pixels multiple times

does introduce the possibility of picking up erroneous overlaps on the ends, but this is why

the extremes are discarded in the previous paragraph.

A new building object, shadowedbuildob j, is created for each shadow object,

containing all the pixels from any building objects which have a nonempty intersection

with the respective set of shadow pixels. While the steps described in this subsection are

being performed, the steps in the following subsection are being performed

simultaneously, and the set of building objects contained within shadowedbuildob j also

include those which are found in this second overlap search.

3.3.2 Erosion of Convex Image of Shadow Object and Overlap Search.

As mentioned above, the steps in this subsection are performed alongside the steps

described in the previous subsection. While the method described above erodes the

shadow object itself, this method instead erodes the convex image of the shadow object.

The convex image of the shadow object is found by filling the convex hull of the shadow

object. Then, the convex image is eroded once using the basic 3 × 3 structuring element of

ones. MATLAB® has a built-in function which finds the convex hull of an object, and this

function creates points along the hull with coordinates of type double. When the

coordinates are rounded to integers, extra pixels can be picked up. This is why the basic

erosion is applied right away. Then the structuring element(s) determined above using

shadowdirection is used in the same way as described in the first paragraph of the

previous subsection to erode the convex image. This result is eroded again the same way

as described in the second paragraph of the previous subsection in order to creater sparser

52

Figure 3.7: Illustration of how building pieces are found using the locations of shadows.

The shadows are outlined in green. The shadow pixels which are used to search for

overlapping building objects are highlighted in magenta and cyan. The magenta pixels

are those which are found by eroding the shadow object. The cyan pixels are those which

are found by eroding the convex hull of the shadow object. The blue outlines describe

the building objects which are picked up during the overlap search. Original image data

available from the U.S. Geological Survey [1].

line segments. The remaining pixels in the convex hull at this point do not need to be

weeded any further. It is not necessary to remove the end points for this set of pixels, since

they will not be translated during the overlap search. The set of shadow pixels in each

convex hull remaining after these erosion steps is highlighted in cyan in Figure 3.7.

The translations described above as necessary to create overlaps between otherwise

adjacent edges do not apply to this set of shadow pixels, which are taken from the convex

hull. This is because they do not describe edges of the shadow object. Ideally the set cuts

diagonally through the corresponding building. Intuitively and as illustrated in Figure 3.7,

the convex hull erosion described here is most helpful when L-shaped shadows are

53

involved, but even for a rectangular shadow, it does not hurt to more thoroughly check for

building overlaps. If the exterior boundary of a building object has a nonempty

intersection with this set of shadow pixels, then the object pixels are added to the list in

shadowedbuildob j for each respective shadow object.

3.3.3 Combining and Processing Building Objects.

The previous two subsections describe how building objects are combined into a single

building object, shadowedbuildob j, representing the entire building which casts each

shadow. However, there is actually another hoop to go through, which is left out in the

earlier discussion, before each overlapping building object is added to shadowedbuildob j

for the respective shadow. Even if a building object has a nonempty intersection with

either of the two eroded shadow pixel sets, it can still be disregarded if it fails to meet one

last condition. This condition compares the building object to the original shadow object

outlined in green in Figure 3.7. If any part of the building object extends past the shadow

in the wrong direction then it is not added to shadowedbuildob j. This relationship is

determined by shadowdirection. If the cosine of shadowdirection is positive, then the

minimum horizontal coordinate in the building object must be greater than the minimum

horizontal coordinate in the shadow object. If the cosine of shadowdirection is negative,

then the maximum horizontal coordinate in the building object must be less than the

maximum horizontal coordinate in the shadow object. The same relationships must hold

true for the sine of shadowdirection and the vertical coordinates in order to include the

building object in shadowedbuildob j for that shadow. The building objects which make

up shadowedbuildob j for each shadow are outlined in blue in Figure 3.7.

It is possible that a particular shadow object may not overlap with any viable building

objects. If this happens then the corresponding shadowedbuildob j will be empty, and the

shadow object will subsequently be discarded. This is not necessarily a bad thing, because

54

Figure 3.8: The building objects picked up during the overlap search are (a) outlined

in blue, and (b) filled in for visualization. Original image data available from the U.S.

Geological Survey [1].

it means the shadow object is most likely a false shadow or is cast by something other than

a building.

The building objects which make up shadowedbuildob j for each shadow are once

again outlined in blue, this time in Figure 3.8. Nothing has changed since Figure 3.7, but

Figure 3.8 simply displays the outlines in a less cluttered manner. The adjacent image,

which simply fills in the outlines of the building objects, can be compared to Figure 3.9.

Now that the segmented objects in the image are reassembled and grouped into

potential bulldings, each grouping can be processed and analyzed for the likelihood of this

potential. Toward that end, each shadowedbuildob j is looked at individually. At this

point, each shadowedbuildob j is a set of pixels which belong to multiple separate objects

which lie in the same vicinity as one another. Before the overall shape of the building

object can be analyzed, however, the pixels must connect to form one single object.

Therefore, the multiple separate objects are made to connect to one another through a

series of morphological operations. Since each shadowedbuildob j is processed separately,

there is no danger of making unwanted connections among the shadowedbuildob js

55

belonging to different shadows. It is still important to avoid overdoing the morphological

“closing,” though. Generally, if it takes more than a handful of dilations to create

connections among the separate objects in shadowedbuildob j, then the objects are not

actually parts of a building. The series used in this algorithm is “dilate,” “close,” “close,”

“erode,” “clean,” but this is not the magical recipe for creating a building. It is simply an

effective technique for combining the objects which does not tend to create false

buildings. Then the exterior boundary of the connected pixels is traced to find the new

shadowedbuildob j. If any of the pixels within shadowedbuildob j are unable to connect

with the others, this tracing step will produce multiple objects once again. If this happens,

only the object with the largest perimeter is retained as the new shadowedbuildob j.

The new shadowedbuildob j is then analyzed in terms of area. Usually, a building is

larger than the shadow it casts, as long as the Sun is not positioned too far at an angle.

Most useful satellite images are taken on clear, sunny days when the Sun is close to

directly overhead. Still, for the sake of generality, a conservative condition is used in this

step. A shadowedbuildob j is discarded only if it has a pixel area smaller than half the

pixel area of the corresponding shadow object. The shadow object used for comparison

here is the original object, which is outlined in green in Figure 3.7, not the eroded pixel

sets. The remaining shadowedbuildob js are displayed in Figure 3.9 and can be compared

to the previous shadowbuildob js before combination and analysis, which are displayed in

Figure 3.8.

3.3.4 Final Processing to Complete Building Extraction.

Finally, each remaining shadowedbuildob j is analyzed using the following three

criteria. A shadowedbuildob j is discarded if it has an extent less than 0.7, if it has an area

less than 0.7 times the minimum expected building area estimate, or if its perimeter is less

than half the minimum expected building perimeter estimate. Extent is once again defined

as the ratio of the pixel area of the object to the pixel area of the filled convex hull of the

56

Figure 3.9: The building objects found during the overlap search have been assembed into

individual buildings and connected. Original image data available from the U.S. Geological

Survey [1].

object. This criterion is helpful in weeding out the more organically shaped objects which

may still remain but are unlikely to represent buildings, such as those which actually

represent forested regions. The minimum expected building area estimate is found by

dividing the minimum expected building perimeter estimate by 4 and squaring it. These

three criteria keep with the conservative nature which applies to the other discard criteria

used throughout this process. The final set of extracted building objects is outlined in blue

in Figure 3.10, but the algorithm is not quite finished yet. The blue outlines are still

somewhat blob-like with missing chunks and jagged edges. To remedy this, it is assumed

that the buildings are all rectangular. A rectangle of best fit is found for each building

object border and outlined in magenta in Figure 3.10. The magenta rectangles are the final

result of the building extraction algorithm, but since finding a best-fit rectangle is a

nontrivial process, an explanation of this step is included in the next subsection.

57

Figure 3.10: Results of the building extraction algorithm are shown in blue and magenta.

The raw building objects are outlined in blue, and the rectangles of best fit which describe

the final extracted building locations are outlined in magenta. Original image data available

from the U.S. Geological Survey [1].

3.3.5 Finding a Rectangle of Best Fit.

The first step to finding a rectangle of best fit for the border of a region of pixels is to

subtract the centroid location from each pixel location in the border. This translates the

region so that the new centroid of the region is located at the origin of the Cartesian

coordinate system. Then, the orientation, θ, of the region is determined to be the angle

between the x-axis in the Cartesian coordinate system and the major axis of the ellipse

which has the same second-moments as the region. Using θ, the region is temporarily

rotated about its centroid, which has been temporarily translated to the origin, so that the

orientation of the region becomes zero.

This temporary rotation is accomplished by applying the rotation to the entire set of

pixels in the region border. For ease of communication, the following rotation equations

refer to the rotation of a single pixel, (x0, y0), around the origin. The basic concept of the

58

rotation involves subtracting θ from the angle of the vector pointing to the pixel in order to

produce a new angle, θtemp, as described by

θtemp = arctan
(

y0

x0

)
− θ. (3.2)

The vector with angle θtemp pointing towards the pixel position after rotation, (x, y),

has a length equal to the length of the original vector, which is equal to
√

x2
0 + y2

0. These

temporary coordinates are therefore defined as

x =

√
x2

0 + y2
0 cos(θtemp)

y =

√
x2

0 + y2
0 sin(θtemp)

. (3.3)

Equation (3.2) is substituted into Equation (3.3). Since

cos(u ± v) = cos(u) cos(v) ∓ sin(u) sin(v), and sin(u ± v) = sin(u) cos(v) ± cos(u) sin(v), the

new equations become

x =

√
x2

0 + y2
0(cos(arctan(y0

x0
)) cos(θ) + sin(arctan(y0

x0
)) sin(θ))

y =

√
x2

0 + y2
0(sin(arctan(y0

x0
)) cos(θ) − cos(arctan(y0

x0
)) sin(θ))

. (3.4)

After applying more trigonometric identities and distributing
√

x2
0 + y2

0, Equation (3.5)

simplifies to

x = x0 cos(θ) + y0 sin(θ)

y = y0 cos(θ) − x0 sin(θ)
. (3.5)

Once the temporary rotation is applied to the set of pixels in the region border, it is

much simpler to find the coordinates of the corner points of the best-fit rectangle. These

corner points are referred to as tople f t, topright, bottomright, and bottomle f t. Although

these labels seem arbitrary when the rectangle is later rotated back to its original

orientation, they are helpful for the intermediate calculations. The top coordinate refers to

the maximum y value in the rectangle. This value is found by clustering all of the positive

59

y coordinate values into 3 clusters. The mode of the set of pixels belonging to the cluster

with the highest mean becomes the top value. This process sounds convoluted, but it

makes sense intuitively. There is a cluster of redundant y values along the top edge of an

ideal rectangle. The same is true for the bottom edge, as well as for the x values along the

left and right edges. The same process used to find the top coordinate value is therefore

adapted and applied toward finding the bottom, le f t, and right coordinate values. Since

top and bottom are y coordinates, and le f t and right are x coordinates, these coordinates

can be combined and substituted into Equation (3.5) to find the corner points and reverse

the rotation so that the orientation of the best-fit rectangle matches the orientation of the

region. Once these corner points are calculated, the original centroid coordinates of the

region are added to the corner points to translate the best-fit rectangle back to where it

belongs.

The corner points are all that is needed to define the best-fit rectangle, but it is also

helpful to find the angles of the vectors normal to the walls of the rectangle. The angle of

the normal vector for the “top” wall is equal to θ + 90◦. The vector normal to the “right”

wall has an angle equal to θ, and the “bottom” wall has a normal vector with angle equal

to θ − 90◦. If θ is positive, the angle of the vector normal to the “left” wall is equal to

θ − 180◦, but if θ is negative, the angle is equal to θ + 180◦.

3.4 Checking Lines of Sight for Obstructions

The remainder of this chapter utilizes information garnered from the building

extraction algorithm described above, which can be applied to any image. The goal of the

remainder of this chapter is to use the building locations discovered by the building

extraction algorithm to improve geolocation accuracy. Since the aerial RGB images used

to validate the building extraction algorithm are large and complex, the images are scaled

down before they are used to validate the remainder of the research method. This scaling

decreases the computation time exponentially. In order to have results near real-time, the

60

Figure 3.11: Results of the building extraction algorithm are scaled to 1% of the original

size. White logic 1 pixels make up the buildings, which are outlined in magenta. Original

image data available from the U.S. Geological Survey [1].

image should be scaled to about 100 × 100 pixels. All that is needed from the bulding

extraction algorithm in order to improve geolocation in the desired manner are the

resulting rectangles of best fit, described by their corner points and wall normal vectors.

Therefore, to scale down the original image of size 977 × 1149 pixels in Figure 3.1, all

that is required is to divide the coordinates of the rectangles each by 10. The other color

data from the original image can be discarded. The resulting image is shown in

Figure 3.11. The original image used for Figure 3.11 has a ground sample distance (GSD)

of 0.6096m. Therefore, the distance on the ground represented by one pixel in the scaled

version shown in Figure 3.11 is 6.096m. There is a slight distortion due to the rounding

required to create integer coordinates following the division. Also, since the buildings are

made up of fewer pixels, some of the tilted buildings appear to have jagged edges.

The next step involves determining which sensors have a direct LOS to the transmitter

and which have an obstructed LOS. This step is incorporated into the process for finding

61

Figure 3.12: Obstructed lines of sight are drawn in red, while others are drawn in green.

The arbitrary transmitter location is plotted as a cyan circle, and the sensor locations are

numbered in white. Original image data available from the U.S. Geological Survey [1].

the shortest paths in Section 3.5 and is implemented multiple times. In Section 3.5 it is

referred to simply as “checking for obstructions.” In this section, this step is described as

if the transmitter location is known. Under these conditions, this is a very simple step. A

line is drawn from the transmitter location to each of the sensor locations. If any of these

lines crosses any pixels which are logic 1 pixels and therefore belong to a building, then

the offending line describes an obstructed LOS. The sensor belonging to this line is

therefore obstructed. The lines of sight for an arbitrary transmitter location and sensor

configuration are shown in Figure 3.12. The arbitrary transmitter location and sensor

configuration shown are used exclusively in the remainder of this chapter to illustrate the

processing steps, and were simply chosen for fluidity and ease of visualization. As

discussed in subsequent chapters, the algorithm can be applied to any transmitter location

and any sensor configuration.

62

3.5 Finding the Shortest Paths

Like Section 3.4, this section also describes a step that will be performed multiple

times in Section 3.6. It will be referred to simply as “finding the shortest path.” The

process is described in this section as if the transmitter location is known. The goal of this

process is to find the shortest distance travelled by the signal from the transmitter to reach

each sensor. If the sensor has a direct LOS to the transmitter, then this problem is simple.

The LOS is the shortest path. However, if a sensor does not have a direct LOS, then the

received signal is actually a reflection of the transmitted signal off one or more building

walls. It is assumed for simplicity that if there is no path available to the signal which

involves 2 or fewer reflections, then the received signal is too weak to be detected by the

sensor. If this case occurs, the offending sensor remains obstructed. The implications of

this event are discussed in Section 3.6.

In order to find the shortest paths, the sensors must be checked for obstructions. The

path length of the signal for each of the unobstructed sensors is simply the Euclidean

distance between the sensor location and the transmitter location. For the obstructed

sensors, it is trickier. Eventually each sensor will be looked at individually to find its

shortest path, but first there are a few computations which apply to the path search for all

the sensors and can be made up front. Any reflective path a signal takes will have to first

reflect off of a building facing the transmitter. To find all possible paths, all of these

potential reflection points must first be found.

Walls are listed by the building to which they belong. Therefore, each building is

looked at individually to find which of its four walls, if any, face(s) the transmitter with an

unobstructed view. A new list is made, called visible, which includes all the walls which

are visible to the transmitter, indexed by building. To determine whether a wall qualifies

for inclusion in this list, its orientation and position are evaluated. When the rectangle of

best fit is found, the angle of the normal vector for each wall is also found. The normal

63

vector for each wall is displayed in Figure 3.13 as a cyan arrow. This normal vector is

essential in determining whether the wall faces the transmitter. The wall is determined to

be facing the transmitter if and only if the transmitter lies in the region bounded by the

line running through the points in the wall and on the same side of the wall as its normal

vector. This determination is described by Equation (3.6), which is the same as

Equation (2.11) in Chapter II. This concept is also illustrated in Figure 2.10 in Chapter II.

Just as described in Section 2.5 of Chapter II, ~a refers to the transmitter location, ~rw refers

to a point in the wall, and Ω̂w refers to the normal vector of the wall.

(~a − ~rw) · Ω̂w > 0 (3.6)

If the wall is determined to be facing the transmitter, the LOS between the transmitter

and the wall is checked for obstructions. This is a little computation-intensive, since every

point along the wall must be checked. If any point along the wall facing the transmitter

has an unobstructed LOS, the wall is added to visible. However, when the wall is added to

visible, only the unobstructed points in the wall are retained.

Once the list of walls which can potentially serve as an initial reflection point has been

compiled, a second list of walls, called visible double, is compiled to include all walls

which can potentially serve as a second reflection point. Compilation of this list begins

with looking at each wall in visible. Each wall in visible is compared to every other wall

which does not belong to the same building as that wall. Ignoring the walls belonging to

the same building saves a little time since it can be assumed that no walls in a rectangular

building can possibly face one another. To determine if two walls face one another,

Equation (3.6) must be applied to each wall. Instead of ~a referring to the transmitter

position, in this application it refers to a point in the opposite wall. If both walls are found

to face one another, then every point in the potential second reflection wall is checked

against every point in the visible wall for obstructions. If the potential second reflection

64

wall and the visible wall face one another with an unobstructed view, then the two walls

are added to visible double as a pair. When these two walls are added to visible double,

only the points with an unobstructed view of at least one point on the opposing wall are

retained. Lumping together the unobstructed points for each wall is an oversimplication,

since there are cases when walls are partially obstructed from one another, and the

unobstructed portions may not entirely match up, but the benefits of this simplication

outweigh the risk of inaccuracy.

At this point, two lists have been created. When the transmitter is assumed to be the

starting location, the walls in visible describe the first half of all potential single-reflection

paths. Likewise, the walls in visible double describe the first two-thirds of all potential

double-reflection paths. Another list can be created in a similar fashion to describe

triple-reflection paths, but this is unnecessary, since the signal loses power with each

reflection. Three reflections would make the signal too weak for detection by the sensors.

Now, it is finally time to look at each of the obstructed sensors. Each obstructed sensor

must be checked against every wall in visible and every second reflection wall in

visible double. If the wall faces the sensor with an unobstructed view, then that visible

wall or visible double pair of walls is added to the list paths for that sensor. If the

obstructed sensor cannot complete any paths which were started in visible or in

visible double, then that sensor remains obstructed. Once each initially obstructed sensor

is compared against each partial path, the list of possible signal paths, paths, for each

sensor is complete. Then, paths for each sensor can be evaluated to find the shortest path

from the transmitter to that sensor. Up until now, reflection “points” are stored as pieces of

building walls in either visible or visible double. To find the optimum point of reflection

on the wall, each point in the wall piece is evaluated in order to find which point creates

the shortest path in the context of the other reflection points in the path. Since it is

assumed that a wall exhibits Lambertian reflectance, the Law of Reflection is irrelevant.

65

Figure 3.13: The shortest path from the transmitter to each sensor is drawn in blue. The

sensor which remains obstructed even after searching for a single- or double-reflection path

is highlighted in red. The transmitter location is plotted as a cyan circle. The buildings are

outlined in magenta, and the normal vectors for each wall of each building are displayed as

cyan arrows. Original image data available from the U.S. Geological Survey [1].

Once the point of reflection is found for each wall piece in regards to the path it describes,

the length of that path is calculated as the sum of the distances from one point to the next

along the path, beginning with the transmitter and ending with the sensor. The shortest

paths from an arbitrary transmitter location to each sensor in an arbitrary configuration are

illustrated in Figure 3.13.

3.6 Combining Signal Information with Image Information

This section describes how all of the previously discussed steps can be incorporated

with TDOA in order to improve geolocation. The TOA of the signal at each sensor is

directly proportional to the distance the signal travels from the sensor to the transmitter.

Since the transmitter being located has an unknown position, this distance as well as the

time it takes the signal to travel from the transmitter to the sensor is unknown. However,

66

the TDOA is known. If the signal has to travel farther to reach sensor i than it does to

reach sensor j, then sensor j will detect the signal before sensor i detects the signal. The

difference in this timing can give a clue about how much farther the signal travels to reach

sensor i than it does to reach sensor j. With traditional TDOA geolocation, the timing

information is utilized under the assumption that the signal travels directly from the

transmitter to the sensor with no reflections. This thesis does not apply this assumption.

This section describes how TDOA can be used to determine the location of a transmitter

under the assumption that the signal may be reflected up to two times before reaching a

sensor.

How is the TDOA data collected? In this research, it is not. Collecting TDOA data is

about as straightforward as it sounds with the correct equipment. However, sample TDOA

data is not available for the aerial RGB images used in this research. Therefore, the TDOA

data is simulated. A transmitter location is arbitrarily chosen to be the actual location, and

the shortest paths from this location to the sensors are determined. These path lengths

along with the GSD are used to calculate the simulated actual TOA of the signal at each

sensor, using c/1.000293 as the propagation speed. The refractive index of air is

1.000293, and c is the speed of light in a vacuum. If a sensor is determined to be

obstructed with no available single- or double-reflection paths, then it is assigned an

infinite TOA value. Then, additive white Gaussian noise (AWGN) is added to the TOA

data, and the simulated TDOA values for all the sensors are calculated in reference to the

same sensor. Any sensor can be chosen to be the reference sensor as long as it does not

have an infinite TOA value. If a sensor has an infinite TOA value, then it also has an

infinite TDOA value. The simulated transmitter location is plotted as a cyan circle, and the

shortest paths are drawn as dashed blue lines in Figure 3.14.

In order to find the MLE of the transmitter location, a grid search is performed to

determine what the noiseless TDOA values would be if the transmitter were located at

67

each grid position. Then, these theoretical values can be compared to the simulated values

from the “actual” transmitter location. This comparison is accomplished using a

measurement referred to here as di f f , which is the average across the sensors of the

square of the difference between the theoretical TDOA value for a sensor and that sensor’s

simulated actual TDOA value. The MLE of the transmitter location is determined to be

the grid location which produces the smallest di f f . If one of the sensors is completely

obstructed from a grid location, then its theoretical TDOA value is infinite. These infinite

values are ignored during the di f f computation. During the grid search, all sensor

locations as well as locations which lie within the buildings or within 1 pixel of the

building boundaries are ignored as possible transmitter locations, because it is assumed

that the transmitter is not in any of these locations.

When performing a grid search, shortest paths are calculated for many possible

transmitter locations. For all of these possible transmitter locations, however, the sensor

locations remain the same. Therefore, flipping the method of finding the shortest paths

saves a significant amount of time. The method is flipped by using the sensor locations as

starting points for the paths, rather than using the transmitter location as the starting point

for each path. This does not affect the accuracy of the results. It simply means that the

final half to two-thirds of the path between a transmitter and a sensor is calculated before

the beginning portion is calculated. This allows the visible and visible double wall lists to

be created and saved outside of the grid search instead of being recomputing for every grid

search guess. Each grid search guess can then be compared to the path portions already

created. Of the paths it is capable of completing, the shortest one is used for that grid

location. Switching up the path calculation in this way speeds up the process roughly by a

factor of 20. Populating the visible and visible double wall lists is considered an “offline”

task, since it can be accomplished without the live TDOA data. These lists are constant for

a given image region and sensor configuration, even if the transmitter is moving.

68

Even though the original aerial RGB image has already been scaled down for this

geolocation portion, and even though populating the visible and visible double lists offline

saves time, a grid search for the MLE is still very computation-intensive. For an image the

size of Figure 3.11 and with the number of walls present in the image, it would take

around 1 hour to find the MLE of the transmitter location while checking every possible

grid location. If, however, grid locations are checked in increments of 10 pixels, this

computation time reduces to about 1 minute. Depending on the real-time requirements of

the implementation, it may or may not be necessary to check every single grid location.

However, since this research aims to produce a high volume of results for comparison, it is

necessary to reduce the time required to find each result.

There is another option to reduce computation time which is a compromise between

checking every grid location and checking every tenth grid location. This option involves

first applying the incremental method and then using the result of that method to decrease

the grid search area. If increments of ten pixels are used, then the result of the incremental

search lies in the center of a 10 × 10 pixel region whose other points have not been

searched. Searching each one of these other points can potentially yield a more accurate

result. Under very noisy conditions, the result of the incremental search may point to a

region which does not contain the true value. In this case, the extra fine-resolution search

will not increase the accuracy of the result. However, depending on the situation, the finer

measurement resolution gained by the extra search may be worth the wait. Theoretically,

adding this extra search to the incremental search should double the computation time

from roughly 1 minute to roughly 2 minutes, since the number of grid points being

checked is doubled. However, the added time may vary significantly depending on the

region found in the incremental search. The added time may be shorter than expected if

the grid points in the region found by the incremental search each produce visible and

visible double wall lists that are much shorter than the average for the image. Shorter wall

69

Figure 3.14: The MLE of the transmitter location computed from a grid search with

coordinate increments of 10 is plotted as a red star, while the “actual” simulated transmitter

location is plotted as a cyan circle. The obstructed sensor is highlighted in red, while the

other sensors are shown in white. The buildings are outlined in magenta, and the shortest

paths from the MLE to the sensors are drawn in green. The shortest paths from the actual

transmitter to the sensors are drawn as dashed blue lines. If the dashed blue lines are

difficult to see, it is because the green lines are drawn over top of them. Original image

data available from the U.S. Geological Survey [1].

lists means fewer paths and path branches to check in order to find the shortest paths.

Figure 3.14 shows the MLE transmitter location as a red star, found using grid coordinate

increments of 10, followed by a fine-resolution search within the resulting 10 × 10 region.

The shortest paths to this location are drawn in green, and the obstructed sensor is

highlighted in red.

There may be another way to reduce the time requried to find each result, which is not

used in this thesis. As described above, the visible and visible double wall lists are

populated offline, and the grid search to complete the paths and calculate the theoretical

TDOA values at each grid location is performed online in this thesis. However, the

70

theoretical TDOA values for the grid locations can actually be calculated and saved offline

as well with a few modifications. In this thesis, an incremental search is performed

followed by a fine-resolution search based on the MLE found during the incremental

search. Choosing the region on which to perform the fine-resolution search requires live

TDOA data. However, if every single location in the grid were checked, live TDOA data

would not be required to complete the search. Only the comparison of each set of

theoretical TDOA data in the grid to the set of measured TDOA data would need to be

performed online. This may decrease the online time required to find the location of a

transmitter. However, there are drawbacks, and the decrease in time may not be significant

enough to be worth them. Even if the theoretical TDOA values are calculated offline, they

would still have to be compared to the measured TDOA values online, and this will take

time. Also, since the entire grid is searched, many more values are being compared in this

method, so a reduction in time is not guaranteed.

The main reason why this thesis both calculates the theoretical TDOA values and

performs the comparisons online is because saving all of the theoretical values offline to

be compared at a separate time takes up a lot of memory. For a 100 × 100 image, enough

memory must be allocated to save 10,000 sets of TDOA values. Each set must contain the

TDOA values for all of the sensors in relation to that grid location. The other issue is the

time it takes to search the entire grid instead of searching in increments. As stated earlier,

checking every single location takes around 1 hour and usually longer depending on the

image, the number of buildings, and the sensor configuration. This added length of time

required for the offline calculations may not be an issue depending on the mission, and it

may be worth the potential decrease in the online computation time. Especially if a

transmitter needs to be located multiple times within an image region with a stationary

sensor configuration, it is beneficial to push the time costs to the front in order to track the

transmitter closer to real time.

71

IV. Results and Analysis

This chapter provides data collected from various simulations using the method

of geolocation presented in this thesis. In each simulation, the result of this thesis

method is compared to the result calculated from a current geolocation method of using

the Taylor series to solve for the intersection of hyperbolic curves created from the

simulated TDOA data. This current method is discussed in Section 2.4 of Chapter II,

which is taken from reference [3].

4.1 Building Extraction Results

Before discussing the overall geolocation results, building extraction results are first

provided for various orthorectified aerial RGB images in order to show the validity of the

method. The following series of figures consists of five pairs of figures. Each pair shows

the results from a particular image. The first figure in each pair shows the major steps in

the building extraction process as explained in Chapter III as well as the runtime of the

algorithm for that image. Remember, this building extraction portion is performed offline.

The major steps from top left to bottom right are (a) the grayscale intensity image after

contrast enhancement; (b) the processed shadow objects and the shadowdirection vector

labelled in cyan; (c) the building objects in blue found to overlap the shadow objects; and

(d) the result of the building extraction algorithm, with the building objects in blue and the

rectangles of best fit in magenta. The second figure in each pair shows some of the

possible variations in the results of the algorithm. Due to the randomness in the clustering

step, results may vary slightly for each image.

72

Figure 4.1: Results of the main steps in building extraction process for Image 1 (17.09

min). Original image data available from the U.S. Geological Survey [1].

Figure 4.2: Sample variations in the result of the building extraction algorithm applied to

Image 1. Original image data available from the U.S. Geological Survey [1].

73

Figure 4.3: Results of the main steps in building extraction process for Image 2 (30.32

min). Original image data available from the U.S. Geological Survey [1].

Figure 4.4: Sample variations in the result of the building extraction algorithm applied to

Image 2. Original image data available from the U.S. Geological Survey [1].

74

Figure 4.5: Results of the main steps in building extraction process for Image 3 (7.53 min).

Original image data available from the U.S. Geological Survey [1].

Figure 4.6: Sample variations in the result of the building extraction algorithm applied to

Image 3. Original image data available from the U.S. Geological Survey [1].

75

Figure 4.7: Results of the main steps in building extraction process for Image 4 (35.31

min). Original image data available from the U.S. Geological Survey [1].

Figure 4.8: Sample variations in the result of the building extraction algorithm applied to

Image 4. Original image data available from the U.S. Geological Survey [1].

76

Figure 4.9: Results of the main steps in building extraction process for Image 5 (5.06 min).

Original image data available from the U.S. Geological Survey [1].

Figure 4.10: Sample variations in the result of the building extraction algorithm applied to

Image 5. Original image data available from the U.S. Geological Survey [1].

77

The building extraction algorithm yields effective results when applied to the first

three images depicted in Figure 4.1 through Figure 4.6. However, Image 4 and Image 5,

depicted in Figure 4.7 through Figure 4.10 appear to be poor cases for the algorithm. In

the case of Image 4, difficulty arises from how busy the image is. Almost all of the

buildings are polychromatic, and they are all oriented in a way that only one side of each

building overlaps its shadow. Also, many of the buildings have jagged borders which

confuse the algorithm especially during the shadow processing stage, since it is tailored to

weed out jagged treelines. Image 5 is a poor case due to a couple factors as well. Many of

the buildings are not only polychromatic, but are also made up of many small details

which break the building object into many tiny pieces. On top of this issue, some of the

buildings are very similar in color to the surrounding area, and when the edges are not

well-defined, clustering groups these pixels into one large object. The other factor is the

distribution of the shadows. Some of the buildings in Image 5 are clumped together so

tightly that their shadows connect to one another. When two shadows connect, the

algorithm treats them as one shadow object, and in the case of Image 5 these combined

shadows are discarded for being too large.

The building extraction algorithm developed in this thesis is a compilation of

techniques already used in current building extraction algorithms, many of which are

discussed in Chapter II. These current algorithms are more sophisticated than the one

used in this thesis. The algorithm used here was developed simply to show that it is

possible to find the location of building walls in order to use them to improve geolocation.

Even if the extracted building walls do not align perfectly with the actual building walls, a

small tilt or position error is acceptable. This is due to the assumption made earlier which

assumes that building walls have Lambertian reflectance. If signal reflections off of the

walls had to obey the law of reflection, then the signal would only be able to travel in one

direction after hitting the wall, and any small tilt in the wall position would change this

78

direction. However, with Lambertian reflectance, the signal bounces of the wall in all

directions, which means that the exact angle of the wall is much less relevant.

4.2 Geolocation Results

In this section, the extracted building locations from the images shown in Section 4.1

are incorporated into a geolocation algorithm as described in Section 3.6 of Chapter III.

The results of various simulations are shown below. For each setup, The simulation is run

fifty times, and the average error and runtime of these fifty simulations are recorded both

for this thesis method and for the current Taylor series method, which iteratively solves for

the intersection of hyperbolic curves created from the TDOA data. The Taylor series

method requires an initial position guess, but the placement of this guess does not affect

the result as long as there are no local minima. Therefore, the same initial position guess

is used for the Taylor series method throughout the simulations. Position locations

throughout this chapter are described by pixels in relation to an origin located at the top

left corner of the image. The y direction increases positively when travelling vertically

downward from the origin.

Furthermore, the runtime for this thesis method is divided into an offline runtime and

an online runtime. The offline runtime includes the time it takes for the building extraction

algorithm to extract the building locations for the particular image. The offline runtime

also includes the time it takes to populate the visible and visible double wall lists for a

given sensor configuration and set of building locations. Populating the wall lists usually

takes less than half of a minute, but every bit of time that can be saved helps. The online

runtime is the time it takes to search for the transmitter location in the manner described in

Section 3.6 of Chapter III. This search time includes the time it takes to find the shortest

path to each guess by completing the wall lists and the time it takes to compare the

theoretical TDOA values to the actual TDOA values in order to find the MLE of the

transmitter location. The offline operations can be performed at any time and only need to

79

Table 4.1: Statistics for Extracted Buildings

Image Orig. Size (px) GSD (m) Sc. Factor Sc. Size GSD Extraction (min)

1 977 × 1149 0.61 10 98 × 115 6.1 17.09

2 1509 × 1777 0.3 15 101 × 119 4.5 30.32

3 1677 × 2201 0.3 15 112 × 147 4.5 7.53

Table 4.2: Comparison of Image Geolocation Averaged over 50 Simulations for Thesis (T)

and Current Taylor Series (C) Methods

Image T Error (m) C Error (m) T Offline (min) T Online (s) C Runtime (s)

1 23.73 48.88 17.45 68.25 0.0065

2 30.35 66.45 30.85 134.42 0.022

3 94.24 143.14 7.90 41.28 0.063

be performed once for a given sensor configuration and image region, but the online

portions must be performed with live TDOA data.

The first simulation compares the geolocation results for Images 1-3 from Figure 4.1,

Figure 4.3, and Figure 4.5. Table 4.1 describes the size in pixels and GSD in meters of the

original and scaled versions of each image. Table 4.2 compares the error and runtime

averaged over fifty simulations for both the thesis method (T) and the current method (C)

with an AWGN standard deviation (σN) of 25m, an actual transmitter centrally located at

(75, 35), and a sensor configuration which places sensors in each of the four corners and in

the center of each image. For the simulations in this chapter, the AWGN is a timing error

added to the simulated TOA values for the actual transmitter location. Although the error

is in time, it is reported here as a distance in meters for ease of comparison. Since a TOA

80

Figure 4.11: In each picture, the actual transmitter location is plotted as a cyan circle, and

the shortest paths from the transmitter to the sensors are drawn as dashed blue lines. The

result of this thesis algorithm is plotted as a red star, and the paths from this location to

the sensors are drawn as green lines. Each iterative result of the current method is plotted

as a yellow circle and connected to the next iterative result by a yellow line, in order to

illustrate the trajectory of the iterations. The final result of the competing method is plotted

as a black X. Simulation results are shown top left to bottom for (a) Image 1; (b) Image 2;

(c) and Image 3. Original image data available from the U.S. Geological Survey [1].

error corresponds to a path-length error, stating the σN in terms of distance is appropriate.

Figure 4.11 illustrates one of the fifty simulations for each of the images.

The second simulation compares the geolocation results for five different transmitter

locations in Image 1 with a σN of 25m and with the same sensor configuration as shown in

81

Table 4.3: Comparison of Transmitter Locations Averaged over 50 Simulations for Thesis

(T) and Current Taylor Series (C) Methods

Tx Location T Error (m) C Error (m) T Online (s) C Runtime (s)

(a) (10,92) 24.04 NaN 86.17 0.019

(b) (75,35) 23.73 48.88 68.25 0.0065

(c) (37,28) 23.82 41.10 122.40 0.0039

(d) (82,85) 25.40 154.40 103.18 0.062

(e) (91,50) 30.99 35.77 76.15 0.0068

Figure 4.11(a). These five transmitter locations were deliberately chosen to represent

differing situations. These situations include situations where one or more sensors is

obstructed, situations where the current method might be expected to perform more

accurately, and situations where this thesis method might skip over the actual location due

to the incremental nature of the grid search. For visualization, one simulation for each

transmitter location is illustrated in Figure 4.12. The average values of the results are

presented in Table 4.3, where “C” refers to the current method, and “T” refers to this

thesis method. Since the sensor configuration has not changed, the offline runtime is the

same for every transmitter location and therefore is not included. It is 17.45 minutes, the

same value as the offline runtime in Table 4.2 for Image 1.

Figure 4.12 and Table 4.3 show that the current method does not converge to a result

for transmitter location (a). The same nonconvergence issue arises in some of the

following simulations as well. In these cases, the differences in TDOA values create

curves that do not intersect in real space. This is a complex idea, but intuitively if TDOA

values are unequally distorted (as caused by reflection paths), then it is possible that they

will not intersect in one single, reasonable location. This lack of covergence is a downfall

of the particular method of solving the hyperbolic equations. There are other current

82

Figure 4.12: In each picture, the actual transmitter location is plotted as a cyan circle, and

the actual shortest paths from the transmitter to the sensors are drawn as dashed blue lines.

The result of this thesis algorithm is plotted as a red star, and the paths from this location to

the sensors are drawn as green lines. Each iterative result of the current method is plotted

as a yellow circle and connected to the next iterative result by a yellow line, in order to

illustrate the trajectory of the iterations. The final result of the competing method is plotted

as a black X. Simulation results are shown from top left to bottom right for transmitter

locations (a) (10, 92); (b) (75, 35); (c) (37, 28); (d) (82, 85); and (e) (91, 50). Original

image data available from the U.S. Geological Survey [1].

methods of solving these equations, which do not have this convergence issue. Some of

these methods are discussed in [3], but the iterative method used here is one of the more

common methods, and it is simple to create with a very fast runtime. It is adequate for

comparison purposes to paint an overall picture of the effectiveness of this thesis method.

83

Figure 4.13: For each σN value, the simulation was run fifty times, and the average error

from both methods is plotted. The red stars delineate the error values for this thesis method,

and the black X’s delineate the error values for the Taylor series method.

The next simulation compares geolocation results of the two methods using five σN

values, the transmitter location (75, 35), and the sensor configuration shown in

Figure 4.11(a). Figure 4.13 plots the average error in the result of both methods across

fifty simulations for each σN value. Table 4.4 lists these values and the average runtime for

both methods. The offline runtime is still 17.45 minutes and is not included in the table.

Table 4.4: Comparison of σN values Averaged over 50 Simulations for Thesis (T) and

Current Taylor Series (C) Methods

σN (m) T Error (m) C Error (m) T Online (s) C Runtime (s)

5 9.84 46.46 64.77 0.0091

25 23.73 48.88 68.25 0.0065

50 54.14 61.06 75.33 0.0065

80 76.94 73.36 78.82 0.0071

115 106.67 90.21 80.14 0.014

84

Table 4.5: Comparison of Sensor Configurations Averaged over 50 Simulations for Thesis

(T) and Current Taylor Series (C) Methods

Sensor Configuration,
x

y
T Error C Error T Offline T Online C Runtime

(a)
4 57 4 110 110

4 49 94 4 94
23.73 m 48.88 m 17.45 min 68.25 s 0.0065 s

(b)
20 38 56 74 92

60 60 60 60 60
115.52 m NaN 17.81 min 73.85 s 0.013 s

(c)
93 103 108 103 93

10 30 50 70 90
85.62 m NaN 17.40 min 58.46 s 0.011 s

(d)
2 42 42 2 22

8 8 48 48 28
86.52 m 165.60 m 17.57 min 127.16 s 0.0065 s

(e)
5 20 55 80 105

55 20 55 20 55
59.02 m 20.87 m 17.68 min 63.94 s 0.0054 s

The final simulation compares geolocation results of the two methods using five

different sensor configurations, a σN of 25m, and the transmitter location (75, 35). For

visualization, one simulation for each sensor configuration is illustrated in Figure 4.14.

The average values of the results are shown in Table 4.5. Since the offline runtimes differ

slightly for each sensor configuration due to the differences in the visible and

visible double wall lists, the offline runtime for each configuration is included in the table.

The results presented in this chapter show that for a reasonable noise level, this thesis

method performs more accurately than the current Taylor series method when obstructions

are involved. However, in the cases when there are no obstructions, the thesis method is

more susceptible to noise than the Taylor series method, which includes a noise correction

85

Figure 4.14: In each picture, the actual transmitter location is plotted as a cyan circle,

and the actual shortest paths from the transmitter to the sensors are drawn as dashed blue

lines. The result of this thesis algorithm is plotted as a red star, and the paths from this

location to the sensors are drawn as green lines. Each iterative result of the current method

is plotted as a yellow circle and connected to the next iterative result by a yellow line, in

order to illustrate the trajectory of the iterations. The final result of the current method is

plotted as a black X. Simulation results are shown from top left to bottom right for sensor

configurations (a), (b), (c), (d), and (e), which are defined in Table 4.5. Original image data

available from the U.S. Geological Survey [1].

when the σN is known, as it is here. Furthermore, there are obstruction situations when the

error in the Taylor series result is mitigated. For example, transmitter location (e) in

Table 4.3 causes spatially opposing sensors 3 and 4 to both measure inflated TDOA

values. Since they are opposite one another, the inflation at these sensors essentially

cancels each other out during the Taylor series calculations.

86

The results also show that sensor configuration (a) in Table 4.5 is the most ideal

configuration for obtaining accurate results out of the five configurations which were

simulated. Linear and near-linear sensor arrays, such as configurations (b) and (c), cause

ambiguity in the results due to a loss in dimensionality. In a case like configuration (d),

where the transmitter location is not within the field enclosed by the sensors, both

methods appear to perform more poorly. For the Taylor series method, however, this is not

a fair conclusion, since the the initial location guess caused the algorithm to terminate

iterations at a local minimum value. However, choosing the initial location guess in order

to avoid these situations is not trivial and is not explored in this thesis. Sensor

configuration (d) may not be fairly represented either, since the situation simulated is a

situation where there are no obstructions. Its performance may be comparable to that of

configuration (a), but the comparison cannot be made since there are no potential

transmitter locations which have an unobstructed path to all five sensors in configuration

(a). The fact that it is so rare to find a completely unobstructed transmitter location proves

how necessary it is to be able to account for the obstructions.

Unfortunately, the geolocation algorithm in this thesis takes much longer than the

Taylor series method to calculate a result. The thesis method online times for the

simulations in this chapter range from 20 seconds to 2 minutes. If the mission involves

tracking a fast-moving target, then it may not be prudent to apply the thesis method for

improved accuracy. Also, if the region of interest is an open field with no obstructions to

the lines of sight of the sensors, then it does not make sense to use the thesis method.

87

V. Conclusions

The goal of this research is to incorporate current image processing techniques

with current geolocation techniques to improve transmitter geolocation when the

transmitter location has an obstructed LOS to all of the ground sensors. Performance of

the improved algorithm is compared to the performance of a current Taylor series

geolocation method which does not consider obstructions. The comparison is made for

several scenarios that vary in the image region, the noise standard deviation, the

transmitter location, and the sensor configuration. Each scenario is simulated 50 times,

and the performance is assessed via Monte Carlo analysis.

5.1 Summary

The resultant thesis algorithm can be divided into two main phases. The first phase is

the building extraction algorithm, which is implemented as a compilation of existing

techniques and not original. This algorithm takes an aerial, orthorectified, RGB image and

determines building locations within the image. Estimates for minimum and maximum

expected building perimeters are required inputs to the algorithm. The algorithm converts

the image to grayscale intensity values and uses a threshold to determine which pixels

belong to the shadows in the image. It is assumed that every building in the image casts a

shadow. Therefore, the search for buildings begins with locating shadows. The shadow

pixels are grouped into shadow objects which are evaluated for certain region properties

which are likely to describe a shadow. Only the most likely shadow objects are retained. It

is also assumed that every building casts a shadow in the same direction. Therefore, all

shadows touch their respective buildings on the same side. The non-shadow pixels in the

image are clustered and segmented into potential building objects based on their intensity

values and connectivity. These objects are compared against the shadow objects. Those

88

which are adjacent to the shadow objects on the correct side are retained. The adjacent

objects for a particular shadow are grouped into a single object, and this object is

evaluated for region properties which are likely to describe a building. Finally, a best-fit

rectangle is calculated for each object, under the assumption that buildings are rectangular.

The rectangle of best fit for a particular building includes information about the building

corner point locations and the normal vectors for each wall in the building.

After building locations are extracted, the thesis algorithm enters the second phase:

geolocation. The geolocation algorithm is a simple grid search to find which location in

the image provides theoretical TDOA values closest to the simulated actual TDOA values.

This is not a new concept. However, the theoretical TDOA calculation method in this

thesis improves upon current techniques. Theoretical TDOA values are calculated in the

same way that the simulated actual TDOA values are calculated, except for the fact that

noise is added for simulated actual TDOA calculation.

The TDOA values at the sensors are calculated from the theoretical TOA values at the

sensors. The TOA value at each sensor is calculated using the image GSD, the speed of

propagation of radio waves in air, and the distance the signal travels from the transmitter

to that sensor. This distance, or path length, is where the image information comes into

play. When a transmitter has an unobstructed LOS to a sensor, the shortest path between

the two points is the LOS. However, with an obstructed LOS, finding the shortest path

between the transmitter and the sensor is not this trivial. The TOA at a sensor for a given

transmitter location cannot be predicted without knowing where the buildings are located

in the image. The building extraction algorithm provides this knowledge. It is assumed

that the signal can reflect off of any building wall and can only be reflected up to two times

before its signal power is diminished to an undetectable level. It is also assumed that the

building walls exhibit Lambertian reflectance, which simply means that a signal reflects in

all directions from the side of the wall it hits regardless of the incidence angle. Based on

89

these assumptions in mind, the algorithm finds every possible single- and

double-reflection path between the transmitter and the sensor. Then, the path with the

shortest length is used to determine the TOA at that sensor.

For simulated actual values, noise is added to the TOA at each sensor before

calculating the TDOA at each sensor. For a grid search guess, no noise is added. When

comparing the sensor set of TDOA values for a grid search guess to the simulated actual

set of TDOA values, a measurement referred to in this thesis as di f f is calculated. The

di f f for a particular grid search guess is the average across the sensors of the square of

the difference between the theoretical TDOA value for a sensor and that sensor’s

simulated actual TDOA value. The grid search guess yielding the smallest di f f is the

geolocation estimate.

Results of the thesis algorithm are compared with the performance achieved using a

current geolocation technique. The current technique uses the Taylor series method of

solving for the intersection of the hyperbolic curves created by the measured TDOA

values.

5.2 Impact

When compared with the Taylor series method, the thesis method improves the

geolocation error by an average of 44m, or 53% in the obstructed simulation cases. This

improvement is based on the 25m σN simulations and does not include the cases in which

the Taylor series method did not converge or the case in which the Taylor series result was

a local minimum.

Each simulation was run 50 times to find the average error and online runtime for both

methods. The runtime of the thesis algorithm is divided into an offline time and an online

time. The offline time includes the time it takes to apply the building extraction algorithm

to an image and the time it takes to populate the visible and visible double wall lists

which describe portions of potential signal paths. These offline operations only need to be

90

performed once for a given image region and sensor configuration. The offline runtimes

vary significantly from one image to the next based mostly on the original size of the

image and on the number of buildings and shadows in the image. The offline runtimes for

the simulations included here range from about 7 minutes to about 30 minutes. The online

runtime of the thesis algorithm includes the time it takes to complete the path portions

from visible and visible double at each grid search guess, to calculate the TDOA values

for each grid guess, and to compare these values to the simulated actual values.

The average online runtimes for the included simulations range from around 20

seconds to around 2 minutes. This is significantly slower than the 0.02 average runtime of

the Taylor-series algorithm which is computed entirely online.

Depending on the mission, the slower computation time of the thesis algorithm may be

tolerable given the improvement in geolocation estimation. Furthermore, the offline

runtime may be a non-issue, since the offline portions can be performed before the start of

the mission. For example, if the mission involves tracking a target in a particular region

with stationary sensors, geolocation can be performed any number of times without

having to recompute the offline portions.

Another drawback of the thesis method is that it does not include a noise correction

capability. Therefore, for situations when all of the sensors have an unobstructed LOS, the

thesis method performs less accurately than the Taylor series method. However, there may

be a way to use the difference between measured and expected signal strengths to

determine whether the measured TDOA is based on a reflection path or from a direct path.

Whether or not obstructions exist can dictate which geolocation method is used.

Another potential drawback of the thesis method is that it cannot find the location of a

target that is outside of the image area. This issue can be overcome simply by padding the

search area. There will not be building information available for the padded area, but even

knowing some of the buildings in a region is helpful. As shown by sensor configuration

91

(d) in Figure 4.14, however, the algorithm tends to be less accurate when the transmitter is

not located within the sensor region.

5.3 Recommendations for Future Work

The algorithm developed under this research represents a conceptual foundation for

including image information in the transmitter geolocation process. There are many ways

in which the algorithm can be improved. First, it is important to assess the algorithm’s

performance with experimental data, rather than simulated data. Second, this thesis

assumed that all buildings are tall enough to reflect or obstruct the signal and that all

sensors and transmitters are far enough off the ground such that the ground does not

interfere with the signal. These assumptions essentially create a 2-dimensional

geolocation plane. It would be more accurate to treat the problem as 3-dimensional, which

would require more advanced image processing to determine the height of the buildings.

Another area for improvement is the unobstructed case. As noted previously, there

may be a way to classify the TDOA as either reflected or direct based on measured and

expected signal strength. It would also be helpful to develop some form of noise

correction capability.

The biggest drawback to the thesis algorithm is the amount of required computation

time. Unfortunately, any type of grid search will be time consuming. It is therefore

desirable to eliminate the need for a grid search. There may be other existing geolocation

techniques that could be adapted to include the image intelligence.

92

Bibliography

[1] “U.S. Department of the Interior U.S. Geological Survey”, 11/22/2013. URL
http://earthexplorer.usgs.gov.

[2] Bhatt, A. D., U. Gupta, V. Wagholikar, and U. V. Pise. “Edge Detection and
Segmentation of Multiple Contours from CT Scan Images”. Computer-Aided Design
Applications, 9(4):501–516, 07 2012. URL http://search.ebscohost.com/login.aspx?
direct=true&db=bth&AN=83769010&site=ehost-live.

[3] Chan, Y. T. and K. C. Ho. “A simple and efficient estimator for hyperbolic location”.
IEEE Transactions on Signal Processing, 42(8):1905–1915, 1994.

[4] Duda, R., P. Hart, and D. Stork. Pattern Classification. Academic Internet
Publishers, 2 edition, 2006.

[5] Kay, S. M. Fundamentals of Statistical Signal Processing: Estimation Theory.
Prentice-Hall, 1993.

[6] Lin, C. and R. Nevatia. “Building Detection and Description from a Single Intensity
Image”, 1998.

[7] Mathews, K. “Radio Paths with Obstructions: The Shortest Radio-Path Algorithm”,
AFIT Technical Report, 2013.

[8] Mueller, S. and D. W. Zaum. “Robust Building Detection in Aerial Images”. The
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XXXVI:143–148, 2005.

[9] Pal, N. R. and S. K. Pal. “A review on image segmentation techniques”. Pattern
Recognition, 26(9):1277–1294, 9 1993.

[10] Reza, R. I. Data fusion for improved TOA/TDOA position determination in wireless
systems. Master of science in electrical engineering, Virginia Polytechnic Institute
and State University, 2000.

[11] Sohn, G. and I. J. Dowman. “Extraction of buildings from high resolution satellite
data”. Automated Extraction of Man-Made Objects from Aerial and Space Images
(III). Balkema Publishers, 345–355. Balkema Publishers, 2001.

[12] Strobel, N. and R. Rabenstein. “Classification of time delay estimates for robust
speaker localization”. Proceedings IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 6, 3081–3084. 1999.

[13] Tsai, V. J. D. “A comparative study on shadow compensation of color aerial images
in invariant color models”. IEEE Transactions on Geoscience and Remote Sensing,
44(6):1661–1671, 2006.

93

http://earthexplorer.usgs.gov
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=83769010&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=83769010&site=ehost-live

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2014 Master’s Thesis Oct 2012–Mar 2014

Combining Image Processing with
Signal Processing to Improve
Transmitter Geolocation Estimation

Abraham, Amy M., Second Lieutenant, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-14-M-01

Intentionally Left Blank

12. DISTRIBUTION / AVAILABILITY STATEMENTDISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13. SUPPLEMENTARY NOTES
This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
14. ABSTRACT
This research develops an algorithm which combines image processing with signal processing to improve transmitter
geolocation capability. A building extraction algorithm is compiled from current techniques in order to provide
the locations of rectangular buildings within an aerial, orthorectified, RGB image to a geolocation algorithm. The
geolocation algorithm relies on measured TDOA data from multiple ground sensors to locate a transmitter by searching
a grid of possible transmitter locations within the image region. At each evaluated grid point, theoretical TDOA values
are computed for comparison to the measured TDOA values. To compute the theoretical values, the shortest path length
between the transmitter and each of the sensors is determined. The building locations are used to determine if the LOS
path between these two points is obstructed and what would be the shortest reflected path length. The grid location
producing theoretical TDOA values closest to the measured TDOA values is the result of the algorithm. Measured
TDOA data is simulated in this thesis. The thesis method performance is compared to that of a current geolocation
method that uses Taylor series expansion to solve for the intersection of hyperbolic curves created by the TDOA data.
The average online runtime of thesis simulations range from around 20 seconds to around 2 minutes, while the Taylor
series method only takes about 0.02 seconds. The thesis method also includes an offline runtime of up to 30 minutes for a
given image region and sensor configuration. The thesis method improves transmitter geolocation error by an average of
44m, or 53% in the obstructed simulation cases when compared with the current Taylor series method. However, in cases
when all sensors have a direct LOS, the current method performs more accurately. Therefore, the thesis method is most
applicable to missions requiring tracking of slower-moving targets in an urban environment with stationary sensors.
15. SUBJECT TERMS
Geolocation, Image Segmentation, Time Difference of Arrival

U U U UU 106

Dr. Richard K. Martin (ENG)

(937) 2553636 x4625; Richard.Martin@afit.edu

	Abstract
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Research Motivation and Related Research
	Research Goal
	Research Methodology
	Thesis Organization

	 Literature Review
	Image Preprocessing Methods
	Image Segmentation Methods
	Image Post-Processing Methods
	Geolocation Methods with Unobstructed Lines of Sight
	Fusion of Signal Information with Image Information

	Methodology
	Image Preprocessing
	Image Segmentation
	Image Post-Processing
	Checking Lines of Sight for Obstructions
	Finding the Shortest Paths
	Combining Signal Information with Image Information

	Results and Analysis
	Building Extraction Results
	Geolocation Results

	Conclusions
	Summary
	Impact
	Recommendations for Future Work

	Bibliography

